Peihao Chen , Chenglin Jiang , Nengquan Li , Xiu-Fang Song , Xintong Wan , He Liu , Jian-Gong Yang , Kai Li
{"title":"Sandwich-type thermally activated delayed fluorescence molecules with through-space charge transfer excited state for red OLEDs","authors":"Peihao Chen , Chenglin Jiang , Nengquan Li , Xiu-Fang Song , Xintong Wan , He Liu , Jian-Gong Yang , Kai Li","doi":"10.1016/j.orgel.2024.107114","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring through-space charge transfer (TSCT) excited state for the design of thermally activated delayed fluorescence (TADF) emitters has been receiving increasing interest for organic light-emitting diodes (OLEDs). In this work, we developed two TSCT-TADF molecules, namely <strong>2DPXZ-QX</strong> and <strong>2DPXZ-DFQX</strong>, which have sandwich-type donor-acceptor-donor (D-A-D) structures supported by two carbazole bridges. Dibenzo[a,c]phenazine (QX) and its fluorinated derivative (DFQX) were used as the acceptors and O-bridged triphenylamine (DPXZ) was used as the donor. The two donors and acceptor in each molecule are aligned in a face-to-face orientation and thus result in the presence of intramolecular π–π interactions, as revealed by their single crystal X-ray structures. The emission maxima (λ<sub>PL</sub>) of <strong>2DPXZ-QX</strong> and <strong>2DPXZ-DFQX</strong> in doped 1,3-bis(N-carbazolyl)benzene films are 595 and 600 nm with photoluminescence quantum yields of 67 % and 54 %, respectively. The delayed fluorescence lifetimes are 8.8 and 6.7 μs. OLEDs based on the new sandwich-type emitters show maximum external quantum efficiencies of up to 19.1 %.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"133 ","pages":"Article 107114"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001253","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring through-space charge transfer (TSCT) excited state for the design of thermally activated delayed fluorescence (TADF) emitters has been receiving increasing interest for organic light-emitting diodes (OLEDs). In this work, we developed two TSCT-TADF molecules, namely 2DPXZ-QX and 2DPXZ-DFQX, which have sandwich-type donor-acceptor-donor (D-A-D) structures supported by two carbazole bridges. Dibenzo[a,c]phenazine (QX) and its fluorinated derivative (DFQX) were used as the acceptors and O-bridged triphenylamine (DPXZ) was used as the donor. The two donors and acceptor in each molecule are aligned in a face-to-face orientation and thus result in the presence of intramolecular π–π interactions, as revealed by their single crystal X-ray structures. The emission maxima (λPL) of 2DPXZ-QX and 2DPXZ-DFQX in doped 1,3-bis(N-carbazolyl)benzene films are 595 and 600 nm with photoluminescence quantum yields of 67 % and 54 %, respectively. The delayed fluorescence lifetimes are 8.8 and 6.7 μs. OLEDs based on the new sandwich-type emitters show maximum external quantum efficiencies of up to 19.1 %.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.