{"title":"Properties of fractional p-Laplace equations with sign-changing potential","authors":"Yubo Duan , Yawei Wei","doi":"10.1016/j.na.2024.113628","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the nonlinear equation involving the fractional p-Laplacian with sign-changing potential. This model draws inspiration from De Giorgi Conjecture. There are two main results in this paper. Firstly, we obtain that the solution is radially symmetric within the bounded domain, by applying the moving plane method. Secondly, by exploiting the idea of the sliding method, we construct the appropriate auxiliary functions to prove that the solution is monotone increasing in some direction in the unbounded domain. The different properties of the solution in bounded and unbounded domains are mainly attributed to the inherent non-locality of the fractional p-Laplacian.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the nonlinear equation involving the fractional p-Laplacian with sign-changing potential. This model draws inspiration from De Giorgi Conjecture. There are two main results in this paper. Firstly, we obtain that the solution is radially symmetric within the bounded domain, by applying the moving plane method. Secondly, by exploiting the idea of the sliding method, we construct the appropriate auxiliary functions to prove that the solution is monotone increasing in some direction in the unbounded domain. The different properties of the solution in bounded and unbounded domains are mainly attributed to the inherent non-locality of the fractional p-Laplacian.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.