Properties of fractional p-Laplace equations with sign-changing potential

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yubo Duan , Yawei Wei
{"title":"Properties of fractional p-Laplace equations with sign-changing potential","authors":"Yubo Duan ,&nbsp;Yawei Wei","doi":"10.1016/j.na.2024.113628","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the nonlinear equation involving the fractional p-Laplacian with sign-changing potential. This model draws inspiration from De Giorgi Conjecture. There are two main results in this paper. Firstly, we obtain that the solution is radially symmetric within the bounded domain, by applying the moving plane method. Secondly, by exploiting the idea of the sliding method, we construct the appropriate auxiliary functions to prove that the solution is monotone increasing in some direction in the unbounded domain. The different properties of the solution in bounded and unbounded domains are mainly attributed to the inherent non-locality of the fractional p-Laplacian.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the nonlinear equation involving the fractional p-Laplacian with sign-changing potential. This model draws inspiration from De Giorgi Conjecture. There are two main results in this paper. Firstly, we obtain that the solution is radially symmetric within the bounded domain, by applying the moving plane method. Secondly, by exploiting the idea of the sliding method, we construct the appropriate auxiliary functions to prove that the solution is monotone increasing in some direction in the unbounded domain. The different properties of the solution in bounded and unbounded domains are mainly attributed to the inherent non-locality of the fractional p-Laplacian.

符号变化势分数 p 拉普拉斯方程的性质
在本文中,我们考虑了涉及符号变化势的分数 p-拉普拉奇的非线性方程。这一模型的灵感来自 De Giorgi 猜想。本文有两个主要结果。首先,我们通过应用移动平面法,得到了解在有界域内是径向对称的。其次,利用滑动法的思想,我们构造了适当的辅助函数,证明解在无界域中的某个方向上是单调递增的。有界域和无界域解的不同性质主要归因于分数 p-Laplacian 固有的非位置性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信