Lingfeng Bian , Weidong Yang , Ting Xu , Zijing Tan
{"title":"An incremental algorithm for repairing denial constraint violations","authors":"Lingfeng Bian , Weidong Yang , Ting Xu , Zijing Tan","doi":"10.1016/j.is.2024.102435","DOIUrl":null,"url":null,"abstract":"<div><p>Data repairing algorithms are extensively studied for improving data quality. Denial constraints (DCs) are commonly employed to state quality specifications that data should satisfy and hence facilitate data repairing since DCs are general enough to subsume many other dependencies. Data in practice are usually frequently updated, which motivates the quest for efficient incremental repairing techniques in response to data updates. In this paper, we present the first incremental algorithm for repairing DC violations. Specifically, given a relational instance <span><math><mi>I</mi></math></span> consistent with a set <span><math><mi>Σ</mi></math></span> of DCs, and a set <span><math><mo>△</mo></math></span> <span><math><mi>I</mi></math></span> of tuple insertions to <span><math><mi>I</mi></math></span>, our aim is to find a set <span><math><mo>△</mo></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of tuple insertions such that <span><math><mi>Σ</mi></math></span> is satisfied on <span><math><mrow><mi>I</mi><mo>+</mo><mo>△</mo></mrow></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. We first formalize and prove the complexity of the problem of incremental data repairing with DCs. We then present techniques that combine auxiliary indexing structures to efficiently identify DC violations incurred by <span><math><mo>△</mo></math></span> <span><math><mi>I</mi></math></span> <em>w.r.t.</em> <span><math><mi>Σ</mi></math></span>, and further develop an efficient repairing algorithm to compute <span><math><mo>△</mo></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> by resolving DC violations. Finally, using both real-life and synthetic datasets, we conduct extensive experiments to demonstrate the effectiveness and efficiency of our approach.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"126 ","pages":"Article 102435"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000930","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data repairing algorithms are extensively studied for improving data quality. Denial constraints (DCs) are commonly employed to state quality specifications that data should satisfy and hence facilitate data repairing since DCs are general enough to subsume many other dependencies. Data in practice are usually frequently updated, which motivates the quest for efficient incremental repairing techniques in response to data updates. In this paper, we present the first incremental algorithm for repairing DC violations. Specifically, given a relational instance consistent with a set of DCs, and a set of tuple insertions to , our aim is to find a set of tuple insertions such that is satisfied on . We first formalize and prove the complexity of the problem of incremental data repairing with DCs. We then present techniques that combine auxiliary indexing structures to efficiently identify DC violations incurred by w.r.t. , and further develop an efficient repairing algorithm to compute by resolving DC violations. Finally, using both real-life and synthetic datasets, we conduct extensive experiments to demonstrate the effectiveness and efficiency of our approach.
为提高数据质量,人们对数据修复算法进行了广泛研究。通常采用拒绝约束(DC)来说明数据应满足的质量规范,从而促进数据修复,因为拒绝约束的通用性足以包含许多其他依赖关系。在实践中,数据通常会频繁更新,这就促使人们寻求高效的增量修复技术来应对数据更新。在本文中,我们提出了第一种用于修复违反 DC 的增量算法。具体来说,给定一个与一组 DC Σ 一致的关系实例 I 和一组插入到 I 中的元组 △ I,我们的目标是找到一组插入元组 △ I′,从而在 I+△ I′ 上满足 Σ。我们首先形式化并证明了使用 DC 进行增量数据修复问题的复杂性。然后,我们提出了结合辅助索引结构的技术,以有效识别△ I 对Σ的DC违反,并进一步开发了一种有效的修复算法,通过解决DC违反来计算△ I′。最后,我们使用真实数据集和合成数据集进行了大量实验,以证明我们的方法的有效性和效率。
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.