A comparative assessment of thermal conductivity of functionally graded and equivalent non-graded ZrB2–B4C–SiC–LaB6 ultra-high-temperature ceramic composites
{"title":"A comparative assessment of thermal conductivity of functionally graded and equivalent non-graded ZrB2–B4C–SiC–LaB6 ultra-high-temperature ceramic composites","authors":"Ajit Kumar Naik , Lava Kumar Pillari , Kyle Lessoway , Lukas Bichler , Tapas Laha , Siddhartha Roy","doi":"10.1016/j.oceram.2024.100653","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, functionally graded ZrB<sub>2</sub>–B<sub>4</sub>C–SiC–LaB<sub>6</sub> composite materials (FGMs) with potential applications in hypersonic aircraft thermal protection systems were fabricated using spark plasma sintering. A systematic study of the thermal conductivity of the FGM, the conductivity of respective FGM layers, and the equivalent non-graded composites, was performed from room temperature up to 450 °C. The results suggest that the thermal conductivity of the FGMs (in the through-thickness direction) and their equivalent non-graded composites ranged between 25 and 34.9 W/mK, which was ∼60 % less than ZrB<sub>2</sub>. While the overall thermal conductivity of the FGM and equivalent non-graded composites were similar, in the FGM, the topmost layer with high ZrB<sub>2</sub>-content displayed up to 245 % higher thermal conductivity than the bottom layer with high B<sub>4</sub>C content. A systematic comparison between experimentally determined conductivity and relevant thermal conductivity models was conducted.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001172/pdfft?md5=378a00f163dc72eeceb0924997fe385b&pid=1-s2.0-S2666539524001172-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, functionally graded ZrB2–B4C–SiC–LaB6 composite materials (FGMs) with potential applications in hypersonic aircraft thermal protection systems were fabricated using spark plasma sintering. A systematic study of the thermal conductivity of the FGM, the conductivity of respective FGM layers, and the equivalent non-graded composites, was performed from room temperature up to 450 °C. The results suggest that the thermal conductivity of the FGMs (in the through-thickness direction) and their equivalent non-graded composites ranged between 25 and 34.9 W/mK, which was ∼60 % less than ZrB2. While the overall thermal conductivity of the FGM and equivalent non-graded composites were similar, in the FGM, the topmost layer with high ZrB2-content displayed up to 245 % higher thermal conductivity than the bottom layer with high B4C content. A systematic comparison between experimentally determined conductivity and relevant thermal conductivity models was conducted.