Jie Ma , Zhixin Qi , Jia Lu , Jianfei Liu , Nan Jia , Mingming Luo
{"title":"Performance enhanced HD-MMIM-OFDM based on geometric shaping","authors":"Jie Ma , Zhixin Qi , Jia Lu , Jianfei Liu , Nan Jia , Mingming Luo","doi":"10.1016/j.yofte.2024.103938","DOIUrl":null,"url":null,"abstract":"<div><p>A high-dimensional multi-mode index modulation orthogonal frequency division multiplexing (HD-MMIM-OFDM) based on geometric shaping is proposed and demonstrated in cost-effective and power efficient intensity modulation direct detection (IM/DD) systems. Four geometrically shaped three-dimensional (3D-GS) constellation schemes are compared and evaluated in terms of minimum Euclidean distance (MED) and constellation figure of merit (CFM). We select the 3D constellation C3 with the optimal performance as the basis and construct three HD constellation schemes by stacking low-dimensional constellations, namely 4D, 5D, and 6D. To further improve the spectral efficiency (SE) of the system, a multi-mode index modulation (MMIM) based on OFDM is proposed and validated at different fiber lengths. The result shows that compared with traditional 2D-OFDM, the receiver sensitivity of 4D-MMIM-OFDM under the same SE increases by 0.46 dB, and the pseudo-Gray coding scheme further improves the receiver sensitivity by 0.16 dB. When the fiber length increases from 50 km to 80 km, the receiver sensitivity of 6D-MMIM-OFDM increases by 0.97 dB compared to 4D-MMIM-OFDM. It has been demonstrated that as the dimension of the constellation increases, the designed scheme exhibits enhanced tolerance to nonlinearity.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103938"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024002839","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A high-dimensional multi-mode index modulation orthogonal frequency division multiplexing (HD-MMIM-OFDM) based on geometric shaping is proposed and demonstrated in cost-effective and power efficient intensity modulation direct detection (IM/DD) systems. Four geometrically shaped three-dimensional (3D-GS) constellation schemes are compared and evaluated in terms of minimum Euclidean distance (MED) and constellation figure of merit (CFM). We select the 3D constellation C3 with the optimal performance as the basis and construct three HD constellation schemes by stacking low-dimensional constellations, namely 4D, 5D, and 6D. To further improve the spectral efficiency (SE) of the system, a multi-mode index modulation (MMIM) based on OFDM is proposed and validated at different fiber lengths. The result shows that compared with traditional 2D-OFDM, the receiver sensitivity of 4D-MMIM-OFDM under the same SE increases by 0.46 dB, and the pseudo-Gray coding scheme further improves the receiver sensitivity by 0.16 dB. When the fiber length increases from 50 km to 80 km, the receiver sensitivity of 6D-MMIM-OFDM increases by 0.97 dB compared to 4D-MMIM-OFDM. It has been demonstrated that as the dimension of the constellation increases, the designed scheme exhibits enhanced tolerance to nonlinearity.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.