The asymptotic of off-diagonal online Ramsey numbers for paths

IF 1 3区 数学 Q1 MATHEMATICS
Adva Mond, Julien Portier
{"title":"The asymptotic of off-diagonal online Ramsey numbers for paths","authors":"Adva Mond,&nbsp;Julien Portier","doi":"10.1016/j.ejc.2024.104032","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for every <span><math><mrow><mi>k</mi><mo>≥</mo><mn>10</mn></mrow></math></span>, the online Ramsey number for paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> satisfies <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>+</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>9</mn></mrow></mfrac><mo>−</mo><mn>4</mn></mrow></math></span>, matching up to a linear term in <span><math><mi>k</mi></math></span> the upper bound recently obtained by Bednarska-Bzdęga (2024). In particular, this implies <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><mfrac><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span>, whenever <span><math><mrow><mn>10</mn><mo>≤</mo><mi>k</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, disproving a conjecture by Cyman et al. (2015).</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001173/pdfft?md5=649b71645f651f52b84e0b2428cf8265&pid=1-s2.0-S0195669824001173-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001173","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for every k10, the online Ramsey number for paths Pk and Pn satisfies r̃(Pk,Pn)53n+k94, matching up to a linear term in k the upper bound recently obtained by Bednarska-Bzdęga (2024). In particular, this implies limnr̃(Pk,Pn)n=53, whenever 10k=o(n), disproving a conjecture by Cyman et al. (2015).

路径的对角线外在线拉姆齐数的渐近线
我们证明,每当 k≥10 时,路径 Pk 和 Pn 的在线拉姆齐数满足 r̃(Pk,Pn)≥53n+k9-4,与贝德纳斯卡-贝兹达加(Bednarska-Bzdęga)最近得到的上界(2024 年)在 k 的线性项上相匹配。特别是,这意味着当 10≤k=o(n) 时,limn→∞r̃(Pk,Pn)n=53,推翻了 Cyman 等人 (2015) 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信