{"title":"Clustering of consecutive numbers in permutations avoiding a pattern of length three or avoiding a finite number of simple patterns","authors":"","doi":"10.1016/j.disc.2024.114199","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>η</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, let <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span> denote the set of permutations in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that avoid the pattern <em>η</em>, and let <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span> denote the expectation with respect to the uniform probability measure on <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>τ</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>, let <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> denote the number of occurrences of <em>k</em> consecutive numbers appearing in <em>k</em> consecutive positions in <span><math><mi>σ</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>, and let <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>;</mo><mi>τ</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> denote the number of such occurrences for which the order of the appearance of the <em>k</em> numbers is the pattern <em>τ</em>. We obtain explicit formulas for <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>;</mo><mi>τ</mi><mo>)</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup></math></span>, for all <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>, all <span><math><mi>η</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and all <span><math><mi>τ</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>. These exact formulas then yield asymptotic formulas as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> with <em>k</em> fixed, and as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> with <span><math><mi>k</mi><mo>=</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mo>∞</mo></math></span>. We also obtain analogous results for <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></mrow></msubsup></math></span>, the subset of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> consisting of permutations avoiding the patterns <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, where <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span>, in the case that <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> are all simple permutations. A particular case of this is the set of separable permutations, which corresponds to <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>2413</mn><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3142</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003303","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For , let denote the set of permutations in that avoid the pattern η, and let denote the expectation with respect to the uniform probability measure on . For and , let denote the number of occurrences of k consecutive numbers appearing in k consecutive positions in , and let denote the number of such occurrences for which the order of the appearance of the k numbers is the pattern τ. We obtain explicit formulas for and , for all , all and all . These exact formulas then yield asymptotic formulas as with k fixed, and as with . We also obtain analogous results for , the subset of consisting of permutations avoiding the patterns , where , in the case that are all simple permutations. A particular case of this is the set of separable permutations, which corresponds to , .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.