{"title":"On Hamiltonian decompositions of complete 3-uniform hypergraphs","authors":"","doi":"10.1016/j.disc.2024.114197","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the definition of Hamiltonian cycles by Katona and Kierstead, we present a recursive construction of tight Hamiltonian decompositions of complete 3-uniform hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, and complete multipartite 3-uniform hypergraph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, where <em>t</em> is the number of partite sets and <em>n</em> is the size of each partite set. For <span><math><mi>t</mi><mo>≡</mo><mn>4</mn><mo>,</mo><mn>8</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, we utilize a tight Hamiltonian decomposition of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> to construct those of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for all positive integers <em>n</em>. By applying our method in conjunction with the current results in literature, we obtain tight Hamiltonian decompositions for infinitely many hypergraphs, namely complete hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and complete multipartite hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for any positive integer <em>n</em>, and <span><math><mi>t</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>5</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>7</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, and <span><math><mn>11</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003285","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the definition of Hamiltonian cycles by Katona and Kierstead, we present a recursive construction of tight Hamiltonian decompositions of complete 3-uniform hypergraphs , and complete multipartite 3-uniform hypergraph , where t is the number of partite sets and n is the size of each partite set. For , we utilize a tight Hamiltonian decomposition of to construct those of and for all positive integers n. By applying our method in conjunction with the current results in literature, we obtain tight Hamiltonian decompositions for infinitely many hypergraphs, namely complete hypergraphs and complete multipartite hypergraphs for any positive integer n, and , and when .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.