Image semantic segmentation of indoor scenes: A survey

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ronny Velastegui , Maxim Tatarchenko , Sezer Karaoglu , Theo Gevers
{"title":"Image semantic segmentation of indoor scenes: A survey","authors":"Ronny Velastegui ,&nbsp;Maxim Tatarchenko ,&nbsp;Sezer Karaoglu ,&nbsp;Theo Gevers","doi":"10.1016/j.cviu.2024.104102","DOIUrl":null,"url":null,"abstract":"<div><p>This survey provides a comprehensive evaluation of various deep learning-based segmentation architectures. It covers a wide range of models, from traditional ones like FCN and PSPNet to more modern approaches like SegFormer and FAN. In addition to assessing the methods in terms of segmentation accuracy, we propose to also evaluate the methods in terms of temporal consistency and corruption vulnerability. Most of the existing surveys on semantic segmentation focus on outdoor datasets. In contrast, this survey focuses on indoor scenarios to enhance the applicability of segmentation methods in this specific domain. Furthermore, our evaluation consists of a performance analysis of the methods in prevalent real-world segmentation scenarios that pose particular challenges. These complex situations involve scenes impacted by diverse forms of noise, blur corruptions, camera movements, optical aberrations, among other factors. By jointly exploring the segmentation accuracy, temporal consistency, and corruption vulnerability in challenging real-world situations, our survey offers insights that go beyond existing surveys, facilitating the understanding and development of better image segmentation methods for indoor scenes.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077314224001838/pdfft?md5=2d19fe112ea2fe5f2c0ab7afa65c3059&pid=1-s2.0-S1077314224001838-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001838","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This survey provides a comprehensive evaluation of various deep learning-based segmentation architectures. It covers a wide range of models, from traditional ones like FCN and PSPNet to more modern approaches like SegFormer and FAN. In addition to assessing the methods in terms of segmentation accuracy, we propose to also evaluate the methods in terms of temporal consistency and corruption vulnerability. Most of the existing surveys on semantic segmentation focus on outdoor datasets. In contrast, this survey focuses on indoor scenarios to enhance the applicability of segmentation methods in this specific domain. Furthermore, our evaluation consists of a performance analysis of the methods in prevalent real-world segmentation scenarios that pose particular challenges. These complex situations involve scenes impacted by diverse forms of noise, blur corruptions, camera movements, optical aberrations, among other factors. By jointly exploring the segmentation accuracy, temporal consistency, and corruption vulnerability in challenging real-world situations, our survey offers insights that go beyond existing surveys, facilitating the understanding and development of better image segmentation methods for indoor scenes.

室内场景的图像语义分割:调查
本调查对各种基于深度学习的分割架构进行了全面评估。它涵盖了各种模型,从 FCN 和 PSPNet 等传统模型到 SegFormer 和 FAN 等更现代的方法。除了从分割准确性的角度对这些方法进行评估外,我们还建议从时间一致性和损坏脆弱性的角度对这些方法进行评估。现有的语义分割调查大多集中在室外数据集上。相比之下,本调查侧重于室内场景,以提高分割方法在这一特定领域的适用性。此外,我们的评估还包括对这些方法在现实世界中常见的分割场景中的性能分析,这些场景带来了特殊的挑战。这些复杂的场景受到各种形式的噪声、模糊损坏、相机移动、光学像差等因素的影响。通过共同探讨具有挑战性的真实场景中的分割准确性、时间一致性和易损坏性,我们的调查提供了超越现有调查的见解,有助于理解和开发更好的室内场景图像分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信