Xiaochen Lu , Yuting Pan , Yuan Liu , Lei Zhang , Yajun Li
{"title":"Multi-dimensional attention-aided transposed ConvBiLSTM network for hyperspectral image super-resolution","authors":"Xiaochen Lu , Yuting Pan , Yuan Liu , Lei Zhang , Yajun Li","doi":"10.1016/j.cviu.2024.104096","DOIUrl":null,"url":null,"abstract":"<div><p>Hyperspectral (HS) image always suffers from the deficiency of low spatial resolution, compared with conventional optical image types, which has limited its further applications in remote sensing areas. Therefore, HS image super-resolution (SR) techniques are broadly employed in order to observe finer spatial structures while preserving the spectra of ground covers. In this paper, a novel multi-dimensional attention-aided transposed convolutional long-short term memory (LSTM) network is proposed for single HS image super-resolution task. The proposed network employs the convolutional bi-directional LSTM for the purpose of local and non-local spatial–spectral feature explorations, and transposed convolution for the purpose of image amplification and reconstruction. Moreover, a multi-dimensional attention module is proposed, aiming to capture the salient features on spectral, channel, and spatial dimensions, simultaneously, to further improve the learning abilities of network. Experiments on four commonly-used HS images demonstrate the effectiveness of this approach, compared with several state-of-the-art deep learning-based SR methods.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001772","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral (HS) image always suffers from the deficiency of low spatial resolution, compared with conventional optical image types, which has limited its further applications in remote sensing areas. Therefore, HS image super-resolution (SR) techniques are broadly employed in order to observe finer spatial structures while preserving the spectra of ground covers. In this paper, a novel multi-dimensional attention-aided transposed convolutional long-short term memory (LSTM) network is proposed for single HS image super-resolution task. The proposed network employs the convolutional bi-directional LSTM for the purpose of local and non-local spatial–spectral feature explorations, and transposed convolution for the purpose of image amplification and reconstruction. Moreover, a multi-dimensional attention module is proposed, aiming to capture the salient features on spectral, channel, and spatial dimensions, simultaneously, to further improve the learning abilities of network. Experiments on four commonly-used HS images demonstrate the effectiveness of this approach, compared with several state-of-the-art deep learning-based SR methods.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems