Tribocatalytic activity of poled BaCuxTi1-xO3-x nanofibers for degradation of organic dye

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Zhiqiang Yang , Xin Wang , Fangjie Wang , Qichao Wu , Min Xiao , Kexin Zhao , Jin Zhang , Baoyin Zhao
{"title":"Tribocatalytic activity of poled BaCuxTi1-xO3-x nanofibers for degradation of organic dye","authors":"Zhiqiang Yang ,&nbsp;Xin Wang ,&nbsp;Fangjie Wang ,&nbsp;Qichao Wu ,&nbsp;Min Xiao ,&nbsp;Kexin Zhao ,&nbsp;Jin Zhang ,&nbsp;Baoyin Zhao","doi":"10.1016/j.apt.2024.104612","DOIUrl":null,"url":null,"abstract":"<div><p>BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were synthesized via the hydrothermal method and subsequently subjected to poling. The impact of composition on their tribocatalytic performance and the underlying catalytic mechanism were investigated. After 100 min, all poled BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> nanofibers exhibited superior tribocatalytic efficiency compared to pure BaTiO<sub>3</sub>, with BaCu<sub>0.02</sub>Ti<sub>0.98</sub>O<sub>2.98</sub> poled nanofibers achieving a degradation rate of up to 80 % for RhB solution. This is because the increased conductivity and reduced carrier recombination rate which were caused by a 0.02 Cu doping, smaller grain size and poling effect. Control experiments confirmed that both stirring and the presence of a catalyst are essential prerequisites for tribocatalysis. Furthermore, the universality, selectivity, stability, and main active group <sup><img></sup>O<sub>2</sub><sup>–</sup> of poled BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were verified. Lastly, although the tribocatalytic efficiency presented in this paper does not match that of piezoelectric catalysis, the latter requires ultrasonic conditions that are challenging to find naturally. As a result, tribocatalysis offers greater potential for practical applications.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104612"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002887","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BaCuxTi1-xO3-x (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were synthesized via the hydrothermal method and subsequently subjected to poling. The impact of composition on their tribocatalytic performance and the underlying catalytic mechanism were investigated. After 100 min, all poled BaCuxTi1-xO3-x nanofibers exhibited superior tribocatalytic efficiency compared to pure BaTiO3, with BaCu0.02Ti0.98O2.98 poled nanofibers achieving a degradation rate of up to 80 % for RhB solution. This is because the increased conductivity and reduced carrier recombination rate which were caused by a 0.02 Cu doping, smaller grain size and poling effect. Control experiments confirmed that both stirring and the presence of a catalyst are essential prerequisites for tribocatalysis. Furthermore, the universality, selectivity, stability, and main active group O2 of poled BaCuxTi1-xO3-x (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were verified. Lastly, although the tribocatalytic efficiency presented in this paper does not match that of piezoelectric catalysis, the latter requires ultrasonic conditions that are challenging to find naturally. As a result, tribocatalysis offers greater potential for practical applications.

Abstract Image

抛光 BaCuxTi1-xO3-x 纳米纤维降解有机染料的摩擦催化活性
通过水热法合成了 BaCuxTi1-xO3-x (x = 0, 0.01, 0.02, 0.03, 0.04) 纳米纤维,随后对其进行了极化处理。研究了成分对其摩擦催化性能的影响及其催化机理。100 分钟后,与纯 BaTiO3 相比,所有抛光的 BaCuxTi1-xO3-x 纳米纤维都表现出更高的摩擦催化效率,其中抛光的 BaCu0.02Ti0.98O2.98 纳米纤维对 RhB 溶液的降解率高达 80%。这是因为 0.02 的铜掺杂、较小的晶粒尺寸和极化效应提高了导电性并降低了载流子重组率。对照实验证实,搅拌和催化剂的存在是摩擦催化的基本前提。此外,还验证了抛光 BaCuxTi1-xO3-x (x = 0、0.01、0.02、0.03、0.04)纳米纤维的普遍性、选择性、稳定性和主要活性基团 O2-。最后,虽然本文中介绍的摩擦催化效率与压电催化的效率不尽相同,但后者需要超声波条件,而自然条件很难找到。因此,摩擦催化在实际应用中具有更大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信