{"title":"Systematic and quantitative testing simulations and theories on phase coarsening by experiments","authors":"K.G. Wang , X. Li","doi":"10.1016/j.mtla.2024.102192","DOIUrl":null,"url":null,"abstract":"<div><p>Microgravity experiments on phase coarsening in solid-liquid mixtures provided an ideal tool to closely and accurately explore the kinetics of phase coarsening because the sedimentation and convective melt flow are eliminated in the International Space Station. In this study, we employed phase-field simulations to systematically investigate the microstructure evolution during phase coarsening at various volume fractions. Simulated microstructure evolution during phase coarsening are compared quantitatively with the microstructure evolution archived from microgravity experiments. Furthermore, kinetics of phase coarsening in Pb-Sn solid-liquid mixtures at various volume fractions is studied theoretically and numerically, which is compared with microgravity experiments. In particular, particle size distribution, relative coarsening rate constants, and scaled maximum particle radii, are predicted from theories, and deduced from microgravity experiments, then calculated from phase-field simulations. This systematic and quantitative study of phase coarsening confirms the consistency to the results from phase-field simulation, microgravity experiments and theories at lower volume fractions, and stimulates more careful microgravity experiments at higher volume fractions (<span><math><mrow><mo>≥</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>).</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"37 ","pages":"Article 102192"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924001893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microgravity experiments on phase coarsening in solid-liquid mixtures provided an ideal tool to closely and accurately explore the kinetics of phase coarsening because the sedimentation and convective melt flow are eliminated in the International Space Station. In this study, we employed phase-field simulations to systematically investigate the microstructure evolution during phase coarsening at various volume fractions. Simulated microstructure evolution during phase coarsening are compared quantitatively with the microstructure evolution archived from microgravity experiments. Furthermore, kinetics of phase coarsening in Pb-Sn solid-liquid mixtures at various volume fractions is studied theoretically and numerically, which is compared with microgravity experiments. In particular, particle size distribution, relative coarsening rate constants, and scaled maximum particle radii, are predicted from theories, and deduced from microgravity experiments, then calculated from phase-field simulations. This systematic and quantitative study of phase coarsening confirms the consistency to the results from phase-field simulation, microgravity experiments and theories at lower volume fractions, and stimulates more careful microgravity experiments at higher volume fractions ().
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).