{"title":"Critical factors for assessing building deconstructability: Exploratory and confirmatory factor analysis","authors":"Habeeb Balogun , Hafiz Alaka , Saheed Ajayi , Christian Nnaemeka Egwim","doi":"10.1016/j.clet.2024.100790","DOIUrl":null,"url":null,"abstract":"<div><p>In various cities/other urban settlements, buildings are replaced with newer stocks, ending many buildings' lives. Unfortunately, these buildings nearing or at end-of-useful lives are mostly not deconstructed; instead, they get demolished, resulting in waste generation and pollution, among other environmental concerns. Deconstruction supports closing the material loop in construction, facilitating reuse at end-of-life of the building; however, it is not always easy to assess the feasibility of deconstruction for existing buildings – deconstructability. For this purpose, this paper investigated critical factors that needed to be checked to make informed decisions about the deconstructability of buildings. These factors cover economic, social, environmental, legal, and technical dimensions. Based on the exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), 31 significant drivers were identified. These drivers were classed into seven factors. The findings in this paper contribute to the practice of deconstruction, mainly supporting deconstructability decision-making and are helpful for deconstruction/demolition auditors, waste-management consultants and/or other stakeholders with waste minimisation goals, particularly for buildings nearing or at the end-of-useful lives.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"21 ","pages":"Article 100790"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000703/pdfft?md5=c37708773ccb76e97b8570dfa07305a4&pid=1-s2.0-S2666790824000703-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In various cities/other urban settlements, buildings are replaced with newer stocks, ending many buildings' lives. Unfortunately, these buildings nearing or at end-of-useful lives are mostly not deconstructed; instead, they get demolished, resulting in waste generation and pollution, among other environmental concerns. Deconstruction supports closing the material loop in construction, facilitating reuse at end-of-life of the building; however, it is not always easy to assess the feasibility of deconstruction for existing buildings – deconstructability. For this purpose, this paper investigated critical factors that needed to be checked to make informed decisions about the deconstructability of buildings. These factors cover economic, social, environmental, legal, and technical dimensions. Based on the exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), 31 significant drivers were identified. These drivers were classed into seven factors. The findings in this paper contribute to the practice of deconstruction, mainly supporting deconstructability decision-making and are helpful for deconstruction/demolition auditors, waste-management consultants and/or other stakeholders with waste minimisation goals, particularly for buildings nearing or at the end-of-useful lives.