Z2Z4-ACP of codes and their applications to the noiseless two-user binary adder channel

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"Z2Z4-ACP of codes and their applications to the noiseless two-user binary adder channel","authors":"","doi":"10.1016/j.disc.2024.114194","DOIUrl":null,"url":null,"abstract":"<div><p>Linear complementary pair (abbreviated to LCP) of codes were defined by Ngo et al. in 2015, and were proved that these pairs of codes can help to improve the security of the information processed by sensitive devices, especially against so-called side-channel attacks (SCA) and fault injection attacks (FIA). In this paper, we first generalize the LCP of codes over finite fields to the additive complementary pair (ACP) of codes in the ambient space with mixed binary and quaternary alphabets. Then we provide two characterizations for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-additive codes pair <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> to be <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes. Meanwhile, we obtain a sufficient condition for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-additive codes pair <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> to be <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes. Under suitable conditions, we derive a necessary and sufficient condition for the Gray map Φ image of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> to be LCP of codes over <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Finally, we exhibit an interesting application of a special class of the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes in coding for the two-user binary adder channel.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400325X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Linear complementary pair (abbreviated to LCP) of codes were defined by Ngo et al. in 2015, and were proved that these pairs of codes can help to improve the security of the information processed by sensitive devices, especially against so-called side-channel attacks (SCA) and fault injection attacks (FIA). In this paper, we first generalize the LCP of codes over finite fields to the additive complementary pair (ACP) of codes in the ambient space with mixed binary and quaternary alphabets. Then we provide two characterizations for the Z2Z4-additive codes pair (C,D) to be Z2Z4-ACP of codes. Meanwhile, we obtain a sufficient condition for the Z2Z4-additive codes pair (C,D) to be Z2Z4-ACP of codes. Under suitable conditions, we derive a necessary and sufficient condition for the Gray map Φ image of Z2Z4-ACP of codes (C,D) to be LCP of codes over Z2. Finally, we exhibit an interesting application of a special class of the Z2Z4-ACP of codes in coding for the two-user binary adder channel.

编码 Z2Z4-ACP 及其在无噪声双用户二进制加法器信道中的应用
Ngo 等人在 2015 年定义了线性互补对码(简称 LCP),并证明这些对码有助于提高敏感设备处理信息的安全性,尤其是对抗所谓的侧信道攻击(SCA)和故障注入攻击(FIA)。在本文中,我们首先将有限域上的编码 LCP 推广到二进制和四进制混合字母环境空间中的编码加法互补对 (ACP)。然后,我们给出了 Z2Z4-加法码对 (C,D) 成为 Z2Z4-ACP 码的两个特征。同时,我们得到了 Z2Z4-附加码对 (C,D) 是 Z2Z4-ACP 的充分条件。在合适的条件下,我们推导出 Z2Z4-ACP 的格雷映射 Φ 图像是 Z2 上编码的 LCP 的必要条件和充分条件。最后,我们展示了一类特殊的 Z2Z4-ACP 编码在双用户二进制加法器信道编码中的有趣应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信