Assessing opportunities for enhanced lighting energy conservation via occupancy and daylight monitoring

Dhairye Gala, Shreya Khetan, Ninad Mehendale
{"title":"Assessing opportunities for enhanced lighting energy conservation via occupancy and daylight monitoring","authors":"Dhairye Gala,&nbsp;Shreya Khetan,&nbsp;Ninad Mehendale","doi":"10.1016/j.meaene.2024.100015","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient energy utilization in buildings is crucial for sustainability. This work proposes an intelligent system that leverages computer vision techniques and CCTV images to assess indoor lighting energy usage based on occupancy, artificial lighting, and daylight conditions. Object detection models - You Only Look Once (YOLO) version 3 (v3) and v8 are employed to detect people, lights, and windows, achieving promising accuracies of 94.9 ​%, 73.3 ​%, and 98.7 ​%, respectively. The system categorizes scenarios as energy-efficient, wasteful, or neutral by integrating these outputs, highlighting opportunities for improving efficiency by harmonizing lighting infrastructure with occupancy and daylight exposure. Performance analyses, including training and validation metrics, are presented. This study demonstrates the potential of computer vision and AI for optimizing energy utilization, enabling sustainable building operation and promoting energy-positive occupant behaviors through sensor-driven methodologies.</p></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"3 ","pages":"Article 100015"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950345024000150/pdfft?md5=cc642ea6fe19b9d2a1bd0f2e3806b4cd&pid=1-s2.0-S2950345024000150-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient energy utilization in buildings is crucial for sustainability. This work proposes an intelligent system that leverages computer vision techniques and CCTV images to assess indoor lighting energy usage based on occupancy, artificial lighting, and daylight conditions. Object detection models - You Only Look Once (YOLO) version 3 (v3) and v8 are employed to detect people, lights, and windows, achieving promising accuracies of 94.9 ​%, 73.3 ​%, and 98.7 ​%, respectively. The system categorizes scenarios as energy-efficient, wasteful, or neutral by integrating these outputs, highlighting opportunities for improving efficiency by harmonizing lighting infrastructure with occupancy and daylight exposure. Performance analyses, including training and validation metrics, are presented. This study demonstrates the potential of computer vision and AI for optimizing energy utilization, enabling sustainable building operation and promoting energy-positive occupant behaviors through sensor-driven methodologies.

评估通过占用和日光监测加强照明节能的机会
高效利用建筑能源对于可持续发展至关重要。这项工作提出了一种智能系统,利用计算机视觉技术和闭路电视图像,根据占用率、人工照明和日光条件评估室内照明能源使用情况。该系统采用物体检测模型--YOLO(You Only Look Once)第 3 版(v3)和第 8 版来检测人、灯光和窗户,准确率分别达到 94.9%、73.3% 和 98.7%。该系统通过整合这些输出,将场景划分为节能、浪费或中性,并通过协调照明基础设施与占用率和日光照射来突出提高效率的机会。研究还介绍了性能分析,包括训练和验证指标。这项研究展示了计算机视觉和人工智能在优化能源利用、实现可持续建筑运营以及通过传感器驱动的方法促进积极节能的用户行为方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信