Feature pyramid biLSTM: Using smartphone sensors for transportation mode detection

IF 3.9 Q2 TRANSPORTATION
Qinrui Tang , Hao Cheng
{"title":"Feature pyramid biLSTM: Using smartphone sensors for transportation mode detection","authors":"Qinrui Tang ,&nbsp;Hao Cheng","doi":"10.1016/j.trip.2024.101181","DOIUrl":null,"url":null,"abstract":"<div><p>The wide utilization of smartphones has provided extensive availability to Inertial Measurement Units, providing a wide range of sensory data that can be advantageous for transportation mode detection. This study proposes a novel end-to-end approach to effectively explore a reduced amount of sensory data collected from a smartphone, aiming to achieve accurate mode detection in common daily traveling activities. Our approach, called Feature Pyramid biLSTM (FPbiLSTM), is characterized by its ability to reduce the number of sensors required and processing demands, resulting in a more efficient modeling process without sacrificing the quality of the outcomes than the other current models. FPbiLSTM extends an existing CNN biLSTM model with the Feature Pyramid Network, leveraging the advantages of both shallow layer richness and deeper layer feature resilience for capturing temporal moving patterns in various transportation modes. It exhibits an excellent performance by employing the data collected from only three out of seven sensors, <em>i.e.,</em> accelerometers, gyroscopes, and magnetometers, in the 2018 Sussex-Huawei Locomotion (SHL) challenge dataset, attaining a noteworthy accuracy of 95% and an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-score of 94% in detecting eight different transportation modes.</p></div>","PeriodicalId":36621,"journal":{"name":"Transportation Research Interdisciplinary Perspectives","volume":"26 ","pages":"Article 101181"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590198224001672/pdfft?md5=82374c5c2111c4bf873503aafd0b14d7&pid=1-s2.0-S2590198224001672-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Interdisciplinary Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590198224001672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The wide utilization of smartphones has provided extensive availability to Inertial Measurement Units, providing a wide range of sensory data that can be advantageous for transportation mode detection. This study proposes a novel end-to-end approach to effectively explore a reduced amount of sensory data collected from a smartphone, aiming to achieve accurate mode detection in common daily traveling activities. Our approach, called Feature Pyramid biLSTM (FPbiLSTM), is characterized by its ability to reduce the number of sensors required and processing demands, resulting in a more efficient modeling process without sacrificing the quality of the outcomes than the other current models. FPbiLSTM extends an existing CNN biLSTM model with the Feature Pyramid Network, leveraging the advantages of both shallow layer richness and deeper layer feature resilience for capturing temporal moving patterns in various transportation modes. It exhibits an excellent performance by employing the data collected from only three out of seven sensors, i.e., accelerometers, gyroscopes, and magnetometers, in the 2018 Sussex-Huawei Locomotion (SHL) challenge dataset, attaining a noteworthy accuracy of 95% and an F1-score of 94% in detecting eight different transportation modes.

Abstract Image

特征金字塔 biLSTM:利用智能手机传感器进行交通模式检测
智能手机的广泛使用为惯性测量单元提供了广泛的可用性,为交通模式检测提供了大量有利的感测数据。本研究提出了一种新颖的端到端方法,以有效探索从智能手机收集到的少量感测数据,从而在常见的日常出行活动中实现精确的模式检测。我们的方法被称为特征金字塔 biLSTM(FPbiLSTM),其特点是能够减少所需的传感器数量和处理需求,从而在不牺牲结果质量的前提下,实现比其他现有模型更高效的建模过程。FPbiLSTM 利用特征金字塔网络扩展了现有的 CNN biLSTM 模型,充分利用了浅层丰富性和深层特征弹性的优势,捕捉各种交通模式中的时间移动模式。在 2018 Sussex-Huawei Locomotion(SHL)挑战赛数据集中,该模型仅使用了七个传感器(即加速度计、陀螺仪和磁力计)中的三个传感器采集的数据,就表现出了卓越的性能,在检测八种不同的交通模式时,准确率达到了 95%,F1 分数达到了 94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Research Interdisciplinary Perspectives
Transportation Research Interdisciplinary Perspectives Engineering-Automotive Engineering
CiteScore
12.90
自引率
0.00%
发文量
185
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信