Fostering urban resilience and accessibility in cities: A dynamic knowledge graph approach

IF 10.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"Fostering urban resilience and accessibility in cities: A dynamic knowledge graph approach","authors":"","doi":"10.1016/j.scs.2024.105708","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the utilisation of knowledge graphs and an agent-based implementation to enhance urban resilience and accessibility in city planning. We expand The World Avatar (TWA) dynamic knowledge graph to support decision-making in disaster response and urban planning. By employing a set of connected agents and integrating diverse data sources — including flood data, geospatial building information, land plots, and open-source data — through sets of ontologies, we demonstrate disaster response in a coastal town in the UK and various aspects relevant to city planning for a mid-sized town in Germany using TWA. In King’s Lynn, our agent-based approach facilitates holistic disaster response by calculating optimal routes, avoiding flooded segments dynamically, assessing infrastructure accessibility before and during a flood using isochrones, identifying inaccessible population areas, guiding infrastructure restoration, and conducting critical path analysis. In Pirmasens, for city planning purposes, the knowledge graph-driven isochrone generation provides evidence-based insights into current amenity coverage and enables scenario planning for future amenities while adhering to land regulations. The implementation of agents and knowledge graphs achieves interoperability and enhances urban resilience and accessibility by enabling cross-domain correlation analysis that extends various areas including geospatial buildings, population demographics, accessibility coverage, and land use regulations.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221067072400533X/pdfft?md5=4476faf32c6ae59172f54256899da3d2&pid=1-s2.0-S221067072400533X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221067072400533X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the utilisation of knowledge graphs and an agent-based implementation to enhance urban resilience and accessibility in city planning. We expand The World Avatar (TWA) dynamic knowledge graph to support decision-making in disaster response and urban planning. By employing a set of connected agents and integrating diverse data sources — including flood data, geospatial building information, land plots, and open-source data — through sets of ontologies, we demonstrate disaster response in a coastal town in the UK and various aspects relevant to city planning for a mid-sized town in Germany using TWA. In King’s Lynn, our agent-based approach facilitates holistic disaster response by calculating optimal routes, avoiding flooded segments dynamically, assessing infrastructure accessibility before and during a flood using isochrones, identifying inaccessible population areas, guiding infrastructure restoration, and conducting critical path analysis. In Pirmasens, for city planning purposes, the knowledge graph-driven isochrone generation provides evidence-based insights into current amenity coverage and enables scenario planning for future amenities while adhering to land regulations. The implementation of agents and knowledge graphs achieves interoperability and enhances urban resilience and accessibility by enabling cross-domain correlation analysis that extends various areas including geospatial buildings, population demographics, accessibility coverage, and land use regulations.

促进城市复原力和城市无障碍环境:动态知识图谱方法
本文探讨了如何利用知识图谱和基于代理的实施方法来提高城市规划中的城市复原力和可达性。我们扩展了 "世界阿凡达"(TWA)动态知识图谱,以支持灾害响应和城市规划中的决策。通过使用一组相互连接的代理,并通过本体集整合各种数据源(包括洪水数据、地理空间建筑信息、地块和开源数据),我们利用 TWA 展示了英国沿海城镇的灾害响应以及德国一个中等规模城镇的城市规划的各个方面。在 King's Lynn,我们基于代理的方法通过计算最佳路线、动态避开洪水淹没区域、使用等时线评估洪水前和洪水期间基础设施的可及性、识别无法进入的人口区域、指导基础设施修复以及进行关键路径分析,促进了整体灾难响应。在皮尔马森斯,为了城市规划的目的,知识图谱驱动的等时线生成为当前的便利设施覆盖提供了基于证据的见解,并在遵守土地法规的同时为未来的便利设施提供了情景规划。代理和知识图谱的实施实现了互操作性,并通过跨领域关联分析,扩展了包括地理空间建筑物、人口统计、无障碍设施覆盖范围和土地使用法规在内的各个领域,增强了城市的复原力和可达性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Cities and Society
Sustainable Cities and Society Social Sciences-Geography, Planning and Development
CiteScore
22.00
自引率
13.70%
发文量
810
审稿时长
27 days
期刊介绍: Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including: 1. Smart cities and resilient environments; 2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management; 3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management); 4. Energy efficient, low/zero carbon, and green buildings/communities; 5. Climate change mitigation and adaptation in urban environments; 6. Green infrastructure and BMPs; 7. Environmental Footprint accounting and management; 8. Urban agriculture and forestry; 9. ICT, smart grid and intelligent infrastructure; 10. Urban design/planning, regulations, legislation, certification, economics, and policy; 11. Social aspects, impacts and resiliency of cities; 12. Behavior monitoring, analysis and change within urban communities; 13. Health monitoring and improvement; 14. Nexus issues related to sustainable cities and societies; 15. Smart city governance; 16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society; 17. Big data, machine learning, and artificial intelligence applications and case studies; 18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems. 19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management; 20. Waste reduction and recycling; 21. Wastewater collection, treatment and recycling; 22. Smart, clean and healthy transportation systems and infrastructure;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信