Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eva Zilecka, Martin Klima, Milan Stefek, Milan Dejmek, Radim Nencka, Evzen Boura
{"title":"Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39","authors":"Eva Zilecka,&nbsp;Martin Klima,&nbsp;Milan Stefek,&nbsp;Milan Dejmek,&nbsp;Radim Nencka,&nbsp;Evzen Boura","doi":"10.1016/j.yjsbx.2024.100109","DOIUrl":null,"url":null,"abstract":"<div><p>Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion. Our previous research identified nsp14 inhibitors based on the chemical scaffold of its methyl donor − the S-adenosyl methionine (SAM) − featuring a modified adenine base and a substituted arylsulfonamide. However, the binding mode of these inhibitors was based only on docking experiments. To uncover atomic details of nsp14 inhibition we solved the crystal structure of nsp14 bound to STM957. The structure revealed the atomic details of nsp14 inhibition such that the 7-deaza-adenine moiety of STM957 forms specific interactions with Tyr368, Ala353, and Phe367, while the arylsulfonamide moiety engages with Asn388 and Phe506. The large aromatic substituent at the 7-deaza position displaces a network of water molecules near the adenine base. Surprisingly, this was recently observed in the case of an unrelated monkeypox MTase VP39, where the 7-deaza modified SAH analogs also displaced water molecules from the vicinity of the active site.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259015242400014X/pdfft?md5=adc7af4fba68360ac9d28aa0d253354d&pid=1-s2.0-S259015242400014X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015242400014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion. Our previous research identified nsp14 inhibitors based on the chemical scaffold of its methyl donor − the S-adenosyl methionine (SAM) − featuring a modified adenine base and a substituted arylsulfonamide. However, the binding mode of these inhibitors was based only on docking experiments. To uncover atomic details of nsp14 inhibition we solved the crystal structure of nsp14 bound to STM957. The structure revealed the atomic details of nsp14 inhibition such that the 7-deaza-adenine moiety of STM957 forms specific interactions with Tyr368, Ala353, and Phe367, while the arylsulfonamide moiety engages with Asn388 and Phe506. The large aromatic substituent at the 7-deaza position displaces a network of water molecules near the adenine base. Surprisingly, this was recently observed in the case of an unrelated monkeypox MTase VP39, where the 7-deaza modified SAH analogs also displaced water molecules from the vicinity of the active site.

Abstract Image

SARS-CoV-2 MT 酶 nsp14 与抑制剂 STM957 的结构揭示了与痘病毒 MT 酶 VP39 共享的抑制机制
Nsp14 是一种由所有冠状病毒编码的 RNA 甲基转移酶(MTase)。事实上,包括 DNA 病毒在内的许多病毒家族都编码 MT 酶,这种酶能催化 RNA 前封顶结构的甲基化,从而使病毒 RNA 完全封顶。这种封顶对病毒 RNA 的高效翻译、稳定性和免疫逃避至关重要。我们之前的研究发现了基于甲基供体--S-腺苷蛋氨酸(SAM)--化学支架的 nsp14 抑制剂,其特点是修饰的腺嘌呤碱基和取代的芳基磺酰胺。然而,这些抑制剂的结合模式仅基于对接实验。为了揭示 nsp14 抑制作用的原子细节,我们解析了 nsp14 与 STM957 结合的晶体结构。该结构揭示了 nsp14 抑制作用的原子细节,如 STM957 的 7-脱氮腺嘌呤分子与 Tyr368、Ala353 和 Phe367 形成特异性相互作用,而芳基磺酰胺分子则与 Asn388 和 Phe506 结合。7-deaza 位上的大型芳香取代基取代了腺嘌呤基附近的水分子网络。令人惊讶的是,最近在与之无关的猴痘 MT 酶 VP39 中也观察到了这种情况,7-脱氮修饰的 SAH 类似物也将水分子从活性位点附近置换出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信