L. Gahleitner , G. Mayr , G. Mayr , P. Burgholzer , U. Cakmak
{"title":"Efficient defect reconstruction from temporal non-uniform pulsed thermography data using the virtual wave concept","authors":"L. Gahleitner , G. Mayr , G. Mayr , P. Burgholzer , U. Cakmak","doi":"10.1016/j.ndteint.2024.103200","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present an extension of the virtual wave concept to enable photothermal reconstruction from temporal non-uniform pulsed thermography data. Therefore, we introduce a generalized discrete transformation kernel, which allows to account for arbitrary temporal sampling strategies. First, we show the evidence of the proposed strategy for analytical temperature signals. Moreover, we demonstrate the advantages of the strategy for simulated temperature signals, obtained from an orthotropic sample with defect interfaces at various depth positions. For experimental verification, we apply pulsed thermography in the pulse-echo configuration for a carbon fiber-reinforced polymer sample with different embedded defects. It can be shown that efficient time sampling in the virtual wave concept allows a significant reduction in the number of data points compared to uniform sampling, without compromising the quality of the reconstruction results.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"147 ","pages":"Article 103200"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0963869524001658/pdfft?md5=90060c4482d635b90caf2d2b4eaa64ab&pid=1-s2.0-S0963869524001658-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001658","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present an extension of the virtual wave concept to enable photothermal reconstruction from temporal non-uniform pulsed thermography data. Therefore, we introduce a generalized discrete transformation kernel, which allows to account for arbitrary temporal sampling strategies. First, we show the evidence of the proposed strategy for analytical temperature signals. Moreover, we demonstrate the advantages of the strategy for simulated temperature signals, obtained from an orthotropic sample with defect interfaces at various depth positions. For experimental verification, we apply pulsed thermography in the pulse-echo configuration for a carbon fiber-reinforced polymer sample with different embedded defects. It can be shown that efficient time sampling in the virtual wave concept allows a significant reduction in the number of data points compared to uniform sampling, without compromising the quality of the reconstruction results.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.