{"title":"Upper bounds of dual flagged Weyl characters","authors":"Simon C.Y. Peng , Zhuowei Lin , Sophie C.C. Sun","doi":"10.1016/j.aam.2024.102752","DOIUrl":null,"url":null,"abstract":"<div><p>For a subset <em>D</em> of boxes in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> square grid, let <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denote the dual character of the flagged Weyl module associated to <em>D</em>. It is known that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> specifies to a Schubert polynomial (resp., a key polynomial) in the case when <em>D</em> is the Rothe diagram of a permutation (resp., the skyline diagram of a composition). One can naturally define a lower and an upper bound of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Mészáros, St. Dizier and Tanjaya conjectured that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> attains the upper bound if and only if <em>D</em> avoids a certain single subdiagram. We provide a proof of this conjecture.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000848","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a subset D of boxes in an square grid, let denote the dual character of the flagged Weyl module associated to D. It is known that specifies to a Schubert polynomial (resp., a key polynomial) in the case when D is the Rothe diagram of a permutation (resp., the skyline diagram of a composition). One can naturally define a lower and an upper bound of . Mészáros, St. Dizier and Tanjaya conjectured that attains the upper bound if and only if D avoids a certain single subdiagram. We provide a proof of this conjecture.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.