Upper bounds of dual flagged Weyl characters

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Simon C.Y. Peng , Zhuowei Lin , Sophie C.C. Sun
{"title":"Upper bounds of dual flagged Weyl characters","authors":"Simon C.Y. Peng ,&nbsp;Zhuowei Lin ,&nbsp;Sophie C.C. Sun","doi":"10.1016/j.aam.2024.102752","DOIUrl":null,"url":null,"abstract":"<div><p>For a subset <em>D</em> of boxes in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> square grid, let <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denote the dual character of the flagged Weyl module associated to <em>D</em>. It is known that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> specifies to a Schubert polynomial (resp., a key polynomial) in the case when <em>D</em> is the Rothe diagram of a permutation (resp., the skyline diagram of a composition). One can naturally define a lower and an upper bound of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Mészáros, St. Dizier and Tanjaya conjectured that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> attains the upper bound if and only if <em>D</em> avoids a certain single subdiagram. We provide a proof of this conjecture.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000848","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a subset D of boxes in an n×n square grid, let χD(x) denote the dual character of the flagged Weyl module associated to D. It is known that χD(x) specifies to a Schubert polynomial (resp., a key polynomial) in the case when D is the Rothe diagram of a permutation (resp., the skyline diagram of a composition). One can naturally define a lower and an upper bound of χD(x). Mészáros, St. Dizier and Tanjaya conjectured that χD(x) attains the upper bound if and only if D avoids a certain single subdiagram. We provide a proof of this conjecture.

对偶标记韦尔字符的上界
对于 n×n 正方形网格中的方框子集 D,让 χD(x) 表示与 D 相关联的标记韦尔模块的对偶特征。众所周知,当 D 是排列的罗特图(即组合的天际线图)时,χD(x) 指定为舒伯特多项式(即键多项式)。我们自然可以定义 χD(x)的下界和上界。Mészáros、St. Dizier 和 Tanjaya 猜想,当且仅当 D 避开了某个单一子图时,χD(x) 才会达到上界。我们为这一猜想提供了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信