Two measures of efficiency for the secretary problem with multiple items at each rank

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Ross G. Pinsky
{"title":"Two measures of efficiency for the secretary problem with multiple items at each rank","authors":"Ross G. Pinsky","doi":"10.1016/j.aam.2024.102751","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, consider the following adaptation of the classical secretary problem. There are <em>k</em> items at each of <em>n</em> linearly ordered ranks. The <em>kn</em> items are revealed, one item at a time, in a uniformly random order, to an observer whose objective is to select an item of highest rank. At each stage the observer only knows the relative ranks of the items that have arrived thus far, and must either select the current item, in which case the process terminates, or reject it and continue to the next item. For <span><math><mi>M</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, let <span><math><mi>S</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>;</mo><mi>M</mi><mo>)</mo></math></span> denote the strategy whereby one allows the first <em>M</em> items to pass, and then selects the first later arriving item whose rank is either equal to or greater than the highest rank of the first <em>M</em> items (if such an item exists). Let <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>S</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>;</mo><mi>M</mi><mo>)</mo></mrow></msub></math></span> denote the event that one selects an item of highest rank using strategy <span><math><mi>S</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>;</mo><mi>M</mi><mo>)</mo></math></span> and let <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>S</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>;</mo><mi>M</mi><mo>)</mo></mrow></msub><mo>)</mo></math></span> denote the corresponding probability. We obtain a formula for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>S</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>;</mo><mi>M</mi><mo>)</mo></mrow></msub><mo>)</mo></math></span>, and for <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>S</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>;</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></msub><mo>)</mo></math></span>, when <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∼</mo><mi>c</mi><mi>k</mi><mi>n</mi></math></span>, with <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. In the classical secretary problem (<span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>), the asymptotic probability of success using an optimal strategy is <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>≈</mo><mn>0.368</mn></math></span>. For <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, the asymptotic probability of success using an optimal strategy from the above class is about 0.701. For <span><math><mi>k</mi><mo>=</mo><mn>7</mn></math></span>, that probability already exceeds 0.99. In the problem with multiple items at each rank, there is an additional measure of efficiency of a strategy besides the probability of selecting an item of highest rank; namely how quickly one selects an item of highest rank. We give a rather complete picture of this efficiency.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000836","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For 2kN, consider the following adaptation of the classical secretary problem. There are k items at each of n linearly ordered ranks. The kn items are revealed, one item at a time, in a uniformly random order, to an observer whose objective is to select an item of highest rank. At each stage the observer only knows the relative ranks of the items that have arrived thus far, and must either select the current item, in which case the process terminates, or reject it and continue to the next item. For M{0,1,,kn1}, let S(n,k;M) denote the strategy whereby one allows the first M items to pass, and then selects the first later arriving item whose rank is either equal to or greater than the highest rank of the first M items (if such an item exists). Let WS(n,k;M) denote the event that one selects an item of highest rank using strategy S(n,k;M) and let Pn,k(WS(n,k;M)) denote the corresponding probability. We obtain a formula for Pn,k(WS(n,k;M)), and for limnPn,k(WS(n,k;Mn)), when Mnckn, with c(0,1). In the classical secretary problem (k=1), the asymptotic probability of success using an optimal strategy is 1e0.368. For k=2, the asymptotic probability of success using an optimal strategy from the above class is about 0.701. For k=7, that probability already exceeds 0.99. In the problem with multiple items at each rank, there is an additional measure of efficiency of a strategy besides the probability of selecting an item of highest rank; namely how quickly one selects an item of highest rank. We give a rather complete picture of this efficiency.

秘书问题的两个效率衡量标准,每个等级有多个项目
对于 2≤k∈N,可以考虑对经典秘书问题进行如下改编。在 n 个线性有序的等级中,每个等级有 k 个物品。一个观察者每次按均匀随机的顺序将 k 个项目逐个显示出来,观察者的目标是选择一个等级最高的项目。在每个阶段,观察者只知道迄今为止到达的项目的相对等级,他必须选择当前项目,在这种情况下,过程终止;或者拒绝当前项目,继续下一个项目。对于 M∈{0,1,⋯,kn-1},让 S(n,k;M)表示这样一种策略:允许前 M 个项目通过,然后选择第一个后来到达的项目,其等级要么等于要么大于前 M 个项目的最高等级(如果存在这样的项目的话)。让 WS(n,k;M)表示使用策略 S(n,k;M)选择最高级别项目的事件,让 Pn,k(WS(n,k;M))表示相应的概率。当 Mn∼ckn 时,我们得到 Pn,k(WS(n,k;M))和 limn→∞Pn,k(WS(n,k;Mn)) 的公式,c∈(0,1)。在经典秘书问题(k=1)中,使用最优策略的渐近成功概率为 1e≈0.368。对于 k=2 的问题,使用上述最优策略的渐近成功概率约为 0.701。对于 k=7 的问题,该概率已经超过了 0.99。在每个等级都有多个项目的问题中,除了选择最高等级项目的概率之外,还有一个衡量策略效率的指标,即选择最高等级项目的速度。我们将对这种效率给出一个比较完整的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信