An improved upper bound on the edge-face coloring of 2-connected plane graphs

Pub Date : 2024-07-24 DOI:10.1016/j.disc.2024.114173
Juan Liu , Xiaoxue Hu , Jiangxu Kong
{"title":"An improved upper bound on the edge-face coloring of 2-connected plane graphs","authors":"Juan Liu ,&nbsp;Xiaoxue Hu ,&nbsp;Jiangxu Kong","doi":"10.1016/j.disc.2024.114173","DOIUrl":null,"url":null,"abstract":"<div><p>The edge-face chromatic number <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>e</mi><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a plane graph <em>G</em> is the least number of colors such that any two adjacent or incident elements in <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>∪</mo><mi>F</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> receive different colors. In 2005, Luo and Zhang proved that each 2-connected simple graph <em>G</em> with <span><math><mi>Δ</mi><mo>≥</mo><mn>24</mn></math></span> has <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>e</mi><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi></math></span>. The condition <span><math><mi>Δ</mi><mo>⩾</mo><mn>24</mn></math></span> is improved to <span><math><mi>Δ</mi><mo>⩾</mo><mn>13</mn></math></span> in this paper.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The edge-face chromatic number χef(G) of a plane graph G is the least number of colors such that any two adjacent or incident elements in E(G)F(G) receive different colors. In 2005, Luo and Zhang proved that each 2-connected simple graph G with Δ24 has χef(G)=Δ. The condition Δ24 is improved to Δ13 in this paper.

分享
查看原文
二连平面图形边-面着色的改进上界
平面图 G 的边-面色度数 χef(G)是 E(G)∪F(G) 中任意两个相邻或入射元素获得不同颜色的最少颜色数。2005 年,Luo 和 Zhang 证明了每个 Δ≥24 的 2 连接简单图 G 都有χef(G)=Δ。本文将条件 Δ⩾24 改进为 Δ⩾13。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信