{"title":"Stability analysis of traveling wave fronts in a model for tumor growth","authors":"Brea Swartwood","doi":"10.1016/j.nonrwa.2024.104176","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the orbital stability of traveling wave solutions to the Gallay and Mascia (GM) reduction of the Gatenby–Gawlinski model. The heteroclinic solutions provided by Gallay and Mascia represent the propagation of a tumor front into healthy tissue. Orbital stability is crucial to investigating models as it determines which solutions are likely to be observed in practice. Through constructing the unstable manifold to connect fixed states of the GM model and applying a shooting argument, we constructed front solutions. After numerically generating front solutions, we studied stability by constructing the spectrum for various parameters of the GM model. We see no evidence of point eigenvalues in the right half-plane, leaving the essential spectrum as the only possible source of instability. These findings show that Gallay and Mascia’s derived heteroclinic solutions are likely to be observed physically in biological systems and are stable for various tumor growth speeds.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001160","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the orbital stability of traveling wave solutions to the Gallay and Mascia (GM) reduction of the Gatenby–Gawlinski model. The heteroclinic solutions provided by Gallay and Mascia represent the propagation of a tumor front into healthy tissue. Orbital stability is crucial to investigating models as it determines which solutions are likely to be observed in practice. Through constructing the unstable manifold to connect fixed states of the GM model and applying a shooting argument, we constructed front solutions. After numerically generating front solutions, we studied stability by constructing the spectrum for various parameters of the GM model. We see no evidence of point eigenvalues in the right half-plane, leaving the essential spectrum as the only possible source of instability. These findings show that Gallay and Mascia’s derived heteroclinic solutions are likely to be observed physically in biological systems and are stable for various tumor growth speeds.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.