Violet Lasdun , Davíd Güereña , Berta Ortiz-Crespo , Stephen Mutuvi , Michael Selvaraj , Teshale Assefa
{"title":"Participatory AI for inclusive crop improvement","authors":"Violet Lasdun , Davíd Güereña , Berta Ortiz-Crespo , Stephen Mutuvi , Michael Selvaraj , Teshale Assefa","doi":"10.1016/j.agsy.2024.104054","DOIUrl":null,"url":null,"abstract":"<div><h3>CONTEXT</h3><p>Crop breeding in the Global South faces a ‘phenotyping bottleneck’ due to reliance on manual visual phenotyping, which is both error-prone and challenging to scale across multiple environments, inhibiting selection of germplasm adapted to farmer production environments. This limitation impedes rapid varietal turnover, crucial for maintaining high yields and food security under climate change. Low adoption of improved varieties results from a top-down system in which farmers have been more passive recipients than active participants in varietal development.</p></div><div><h3>OBJECTIVE</h3><p>A new suite of research at the Alliance of Bioversity and CIAT seeks to democratize crop breeding by leveraging mobile phenotyping technologies for high-quality, decentralized data collection. This approach aims to resolve the inherent limitations and inconsistencies in traditional visual phenotyping methods, allowing for more accurate and efficient crop assessment. In parallel, the research seeks to harness multimodal data on farmer preferences to better tailor variety development xzto meet specific production and consumption goals.</p></div><div><h3>METHODS</h3><p>Novel mobile phenotyping tools were developed and field-tested on breeder stations in Colombia and Tanzania, and data from these trials were analyzed for quality and accuracy, and compared with traditional manual estimates and absolute ground truth data. Concurrently, Human-Centered Design (HCD) methods were applied to ensure the technology suits its context of use, and serves the nuanced requirements of breeders.</p></div><div><h3>RESULTS AND CONCLUSIONS</h3><p>Computer vison (CV)-enabled mobile phenotyping achieved a significant reduction in scoring variation, attaining imagery-modeled trait accuracies with Pearson Correlation values between 0.88 and 0.95 with ground truth data, and reduced labor requirements with the ability to fully phenotype a breeder's plot (4 m × 3 m) in under a minute. With this technology, high-quality quantitative phenotyping data can be collected by anyone with a smartphone, expanding the potential to measure crop performance in decentralized on-farm environments and improving accuracy and speed of crop improvement on breeder stations.</p></div><div><h3>SIGNIFICANCE</h3><p>Inclusive innovations in mobile phenotyping technologies and AI-supported data collection enable rapid, accurate trait assessment and actively involve farmers in variety selection, aligning breeding programs with local needs and preferences. These advancements offer a timely solution for accelerating varietal turnover to mitigate climate change impacts, while ensuring developed varieties are both high-performing and culturally relevant.</p></div>","PeriodicalId":7730,"journal":{"name":"Agricultural Systems","volume":"220 ","pages":"Article 104054"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Systems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308521X2400204X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
CONTEXT
Crop breeding in the Global South faces a ‘phenotyping bottleneck’ due to reliance on manual visual phenotyping, which is both error-prone and challenging to scale across multiple environments, inhibiting selection of germplasm adapted to farmer production environments. This limitation impedes rapid varietal turnover, crucial for maintaining high yields and food security under climate change. Low adoption of improved varieties results from a top-down system in which farmers have been more passive recipients than active participants in varietal development.
OBJECTIVE
A new suite of research at the Alliance of Bioversity and CIAT seeks to democratize crop breeding by leveraging mobile phenotyping technologies for high-quality, decentralized data collection. This approach aims to resolve the inherent limitations and inconsistencies in traditional visual phenotyping methods, allowing for more accurate and efficient crop assessment. In parallel, the research seeks to harness multimodal data on farmer preferences to better tailor variety development xzto meet specific production and consumption goals.
METHODS
Novel mobile phenotyping tools were developed and field-tested on breeder stations in Colombia and Tanzania, and data from these trials were analyzed for quality and accuracy, and compared with traditional manual estimates and absolute ground truth data. Concurrently, Human-Centered Design (HCD) methods were applied to ensure the technology suits its context of use, and serves the nuanced requirements of breeders.
RESULTS AND CONCLUSIONS
Computer vison (CV)-enabled mobile phenotyping achieved a significant reduction in scoring variation, attaining imagery-modeled trait accuracies with Pearson Correlation values between 0.88 and 0.95 with ground truth data, and reduced labor requirements with the ability to fully phenotype a breeder's plot (4 m × 3 m) in under a minute. With this technology, high-quality quantitative phenotyping data can be collected by anyone with a smartphone, expanding the potential to measure crop performance in decentralized on-farm environments and improving accuracy and speed of crop improvement on breeder stations.
SIGNIFICANCE
Inclusive innovations in mobile phenotyping technologies and AI-supported data collection enable rapid, accurate trait assessment and actively involve farmers in variety selection, aligning breeding programs with local needs and preferences. These advancements offer a timely solution for accelerating varietal turnover to mitigate climate change impacts, while ensuring developed varieties are both high-performing and culturally relevant.
期刊介绍:
Agricultural Systems is an international journal that deals with interactions - among the components of agricultural systems, among hierarchical levels of agricultural systems, between agricultural and other land use systems, and between agricultural systems and their natural, social and economic environments.
The scope includes the development and application of systems analysis methodologies in the following areas:
Systems approaches in the sustainable intensification of agriculture; pathways for sustainable intensification; crop-livestock integration; farm-level resource allocation; quantification of benefits and trade-offs at farm to landscape levels; integrative, participatory and dynamic modelling approaches for qualitative and quantitative assessments of agricultural systems and decision making;
The interactions between agricultural and non-agricultural landscapes; the multiple services of agricultural systems; food security and the environment;
Global change and adaptation science; transformational adaptations as driven by changes in climate, policy, values and attitudes influencing the design of farming systems;
Development and application of farming systems design tools and methods for impact, scenario and case study analysis; managing the complexities of dynamic agricultural systems; innovation systems and multi stakeholder arrangements that support or promote change and (or) inform policy decisions.