Boundary rigidity of CAT(0) cube complexes

IF 1.2 1区 数学 Q1 MATHEMATICS
Jérémie Chalopin, Victor Chepoi
{"title":"Boundary rigidity of CAT(0) cube complexes","authors":"Jérémie Chalopin,&nbsp;Victor Chepoi","doi":"10.1016/j.jctb.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we prove that finite CAT(0) cube complexes can be reconstructed from their boundary distances (computed in their 1-skeleta). This result was conjectured by Haslegrave, Scott, Tamitegama, and Tan (2023). The reconstruction of a finite cell complex from the boundary distances is the discrete version of the boundary rigidity problem, which is a classical problem from Riemannian geometry. In the proof, we use the bijection between CAT(0) cube complexes and median graphs, and corner peelings of median graphs.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 352-366"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000625","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we prove that finite CAT(0) cube complexes can be reconstructed from their boundary distances (computed in their 1-skeleta). This result was conjectured by Haslegrave, Scott, Tamitegama, and Tan (2023). The reconstruction of a finite cell complex from the boundary distances is the discrete version of the boundary rigidity problem, which is a classical problem from Riemannian geometry. In the proof, we use the bijection between CAT(0) cube complexes and median graphs, and corner peelings of median graphs.

CAT(0) 立方体复合物的边界刚度
在本论文中,我们证明了有限 CAT(0) 立方复数可以通过其边界距离(以其 1-skeleta 计算)来重建。这一结果是由 Haslegrave、Scott、Tamitegama 和 Tan(2023 年)猜想出来的。从边界距离重构有限单元复数是边界刚度问题的离散版本,而边界刚度问题是黎曼几何中的经典问题。在证明过程中,我们使用了 CAT(0) 立方体复数与中值图之间的双射关系,以及中值图的角剥离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信