Machine learning models applied to altimetry era tide gauge and grid altimetry data for comparative long-term trend estimation: A study from Shikoku Island, Japan

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
{"title":"Machine learning models applied to altimetry era tide gauge and grid altimetry data for comparative long-term trend estimation: A study from Shikoku Island, Japan","authors":"","doi":"10.1016/j.apor.2024.104132","DOIUrl":null,"url":null,"abstract":"<div><p>Estimation of sea level trends is essential for understanding sea level rise dynamics. In this study, the performance of traditional Ordinary Least Squares (OLS) linear trend forecasting is compared with modern machine learning techniques, specifically Random Forests (RF) and Least Squares Support Vector Machines (LS-SVM).These methods are applied to 50 years of long-term tide gauge (TG) data from six tide gauge stations off the coast of Shikoku Island, Japan, and CMEMS Grid Altimetry data from 1993 to the present. The analysis uses OLS, RF, and LS-SVM to estimate trends from both data sets and compares the results. The objective is to determine the consistency and accuracy of RF and LS-SVM methods compared to the OLS method. The results indicate that machine learning algorithms (LS-SVM) effectively estimate sea level trends, offering potential improvements in precision for both long-term and medium-term analyses. Shikoku Island's coastal sea level trend is determined as 2.91±1.44 mm/yr using TG data and 3.00±1.52 mm/yr using CMEMS Grid Altimeter data with the OLS approach. Using the LS-SVM approach, the trend is found as 2.96±1.58 mm/yr with TG data and 3.02±1.60 mm/yr with CMEMS Grid Altimetry data. The novelty of this study lies in its thorough comparison of traditional and machine learning approaches for sea level trend estimation, providing valuable insights for future predictions of the sea level rise.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724002530","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of sea level trends is essential for understanding sea level rise dynamics. In this study, the performance of traditional Ordinary Least Squares (OLS) linear trend forecasting is compared with modern machine learning techniques, specifically Random Forests (RF) and Least Squares Support Vector Machines (LS-SVM).These methods are applied to 50 years of long-term tide gauge (TG) data from six tide gauge stations off the coast of Shikoku Island, Japan, and CMEMS Grid Altimetry data from 1993 to the present. The analysis uses OLS, RF, and LS-SVM to estimate trends from both data sets and compares the results. The objective is to determine the consistency and accuracy of RF and LS-SVM methods compared to the OLS method. The results indicate that machine learning algorithms (LS-SVM) effectively estimate sea level trends, offering potential improvements in precision for both long-term and medium-term analyses. Shikoku Island's coastal sea level trend is determined as 2.91±1.44 mm/yr using TG data and 3.00±1.52 mm/yr using CMEMS Grid Altimeter data with the OLS approach. Using the LS-SVM approach, the trend is found as 2.96±1.58 mm/yr with TG data and 3.02±1.60 mm/yr with CMEMS Grid Altimetry data. The novelty of this study lies in its thorough comparison of traditional and machine learning approaches for sea level trend estimation, providing valuable insights for future predictions of the sea level rise.

将机器学习模型应用于测高时代验潮仪和网格测高数据的长期趋势比较估算:日本四国岛研究
估算海平面趋势对于了解海平面上升动态至关重要。本研究将传统的普通最小二乘法(OLS)线性趋势预测与现代机器学习技术(特别是随机森林(RF)和最小二乘支持向量机(LS-SVM))的性能进行了比较,这些方法被应用于日本四国岛沿海六个验潮站的 50 年长期验潮仪(TG)数据,以及 1993 年至今的 CMEMS 栅格测高数据。分析使用 OLS、RF 和 LS-SVM 对两组数据的趋势进行估计,并对结果进行比较。目的是确定 RF 和 LS-SVM 方法与 OLS 方法相比的一致性和准确性。结果表明,机器学习算法(LS-SVM)可以有效地估计海平面趋势,为长期和中期分析提供潜在的精度改进。使用 TG 数据确定的四国岛沿海海平面趋势为 2.91±1.44 毫米/年,使用 OLS 方法确定的 CMEMS 网格测高仪数据为 3.00±1.52 毫米/年。使用 LS-SVM 方法,TG 数据的趋势为 2.96±1.58 毫米/年,CMEMS 栅格测高仪数据的趋势为 3.02±1.60 毫米/年。本研究的新颖之处在于对海平面趋势估算的传统方法和机器学习方法进行了全面比较,为未来预测海平面上升提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信