The Erdős-Gyárfás function f(n,4,5)=56n+o(n) — So Gyárfás was right

IF 1.2 1区 数学 Q1 MATHEMATICS
Patrick Bennett , Ryan Cushman , Andrzej Dudek , Paweł Prałat
{"title":"The Erdős-Gyárfás function f(n,4,5)=56n+o(n) — So Gyárfás was right","authors":"Patrick Bennett ,&nbsp;Ryan Cushman ,&nbsp;Andrzej Dudek ,&nbsp;Paweł Prałat","doi":"10.1016/j.jctb.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>A <span><math><mo>(</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></math></span>-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> where every 4-clique spans at least five colors. We show that there exist <span><math><mo>(</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></math></span>-colorings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> using <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> colors. This settles a disagreement between Erdős and Gyárfás reported in their 1997 paper. Our construction uses a randomized process which we analyze using the so-called differential equation method to establish dynamic concentration. In particular, our coloring process uses random triangle removal, a process first introduced by Bollobás and Erdős, and analyzed by Bohman, Frieze and Lubetzky.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 253-297"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000601","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A (4,5)-coloring of Kn is an edge-coloring of Kn where every 4-clique spans at least five colors. We show that there exist (4,5)-colorings of Kn using 56n+o(n) colors. This settles a disagreement between Erdős and Gyárfás reported in their 1997 paper. Our construction uses a randomized process which we analyze using the so-called differential equation method to establish dynamic concentration. In particular, our coloring process uses random triangle removal, a process first introduced by Bollobás and Erdős, and analyzed by Bohman, Frieze and Lubetzky.

Erdős-Gyárfás 函数 f(n,4,5)=56n+o(n) - 所以 Gyárfás 是对的
Kn 的 (4,5)- 着色是 Kn 的边染色,其中每个 4 小格至少跨越五种颜色。我们证明存在使用 56n+o(n) 种颜色的 Kn (4,5)- 着色。这解决了 Erdős 和 Gyárfás 在 1997 年论文中提出的分歧。我们的构造使用了一种随机过程,我们使用所谓的微分方程法对其进行分析,以建立动态集中。特别是,我们的着色过程使用了随机三角形去除,这个过程最早由 Bollobás 和 Erdős 提出,并由 Bohman、Frieze 和 Lubetzky 进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信