Ryuki Sumida, Lorenzo Catti and Michito Yoshizawa*,
{"title":"Bioinspired Binding and Conversion of Linear Monoterpenes by Polyaromatic Coordination Capsules","authors":"Ryuki Sumida, Lorenzo Catti and Michito Yoshizawa*, ","doi":"10.1021/acsorginorgau.4c0001310.1021/acsorginorgau.4c00013","DOIUrl":null,"url":null,"abstract":"<p >Linear monoterpenes, versatile reaction biosubstrates, are bound and subsequently converted to various cyclic monomers and oligomers with excellent selectivity and efficiency, <i>only</i> in natural enzymes. We herein report bioinspired functions of synthetic polyaromatic cavities toward linear monoterpenes in the solution and solid states. The cavities are provided by polyaromatic coordination capsules, formed by the assembly of Pt(II) ions and bent bispyridine ligands with two anthracene panels. By using the capsule cavities, the selective binding of citronellal from mixtures with other monoterpenes and its preferential vapor binding over its derivatives are demonstrated in water and in the solid state, respectively. The capsule furthermore extracts <i>p</i>-menthane-3,8-diol, with high product- and stereoselectivity, from a reaction mixture obtained by the acid-catalyzed cyclization of citronellal in water. Thanks to the inner and outer polyaromatic cavities, the catalytic cyclization-dimerization of vaporized citronellal efficiently proceeds in the acid-loaded capsule solid and product/stereoselectively affords <i>p</i>-menthane-3,8-diol citronellal acetal (∼330% yield based on the capsule) under ambient conditions. The solid capsule reactor can be reused at least 5 times with enhanced conversion. The present study opens up a new approach toward mimicking terpene biosynthesis via synthetic polyaromatic cavities.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.4c00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Linear monoterpenes, versatile reaction biosubstrates, are bound and subsequently converted to various cyclic monomers and oligomers with excellent selectivity and efficiency, only in natural enzymes. We herein report bioinspired functions of synthetic polyaromatic cavities toward linear monoterpenes in the solution and solid states. The cavities are provided by polyaromatic coordination capsules, formed by the assembly of Pt(II) ions and bent bispyridine ligands with two anthracene panels. By using the capsule cavities, the selective binding of citronellal from mixtures with other monoterpenes and its preferential vapor binding over its derivatives are demonstrated in water and in the solid state, respectively. The capsule furthermore extracts p-menthane-3,8-diol, with high product- and stereoselectivity, from a reaction mixture obtained by the acid-catalyzed cyclization of citronellal in water. Thanks to the inner and outer polyaromatic cavities, the catalytic cyclization-dimerization of vaporized citronellal efficiently proceeds in the acid-loaded capsule solid and product/stereoselectively affords p-menthane-3,8-diol citronellal acetal (∼330% yield based on the capsule) under ambient conditions. The solid capsule reactor can be reused at least 5 times with enhanced conversion. The present study opens up a new approach toward mimicking terpene biosynthesis via synthetic polyaromatic cavities.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.