Nancy Sharma, Walaa Mohammad, Xavier Le Guével* and Asifkhan Shanavas*,
{"title":"Gold Nanoclusters as High Resolution NIR-II Theranostic Agents","authors":"Nancy Sharma, Walaa Mohammad, Xavier Le Guével* and Asifkhan Shanavas*, ","doi":"10.1021/cbmi.4c0002110.1021/cbmi.4c00021","DOIUrl":null,"url":null,"abstract":"<p >In the realm of nanomaterials, atomically precise quasi-molecular gold nanoclusters (AuNCs) play a prime role due to their unique, stable, and highly tunable optical properties. They are extensively structure-engineered for modulation of surface electronic states toward long wavelength photoluminescence, particularly in the NIR-II (1000 to 1700 nm) window. Contrast agents with NIR-II emission can potentially transform optical imaging in terms of higher spatial resolution, deeper tissue penetration, and reduced tissue autofluorescence. These advantages allow real-time imaging in living organisms for observing disease progression and treatment response. In this short review, we discuss origin of NIR-II emission in rationally designed AuNCs and their application toward high resolution imaging of vasculatures and hard and soft tissue structures for identification of pathological conditions such as stroke and injury. Further, recent employment of these AuNCs in the rapidly growing field of tumor theranostics is also summarized. Final remarks are provided on the scope for improvement in their optical properties and persisting challenges for clinical translation.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 7","pages":"462–480 462–480"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of nanomaterials, atomically precise quasi-molecular gold nanoclusters (AuNCs) play a prime role due to their unique, stable, and highly tunable optical properties. They are extensively structure-engineered for modulation of surface electronic states toward long wavelength photoluminescence, particularly in the NIR-II (1000 to 1700 nm) window. Contrast agents with NIR-II emission can potentially transform optical imaging in terms of higher spatial resolution, deeper tissue penetration, and reduced tissue autofluorescence. These advantages allow real-time imaging in living organisms for observing disease progression and treatment response. In this short review, we discuss origin of NIR-II emission in rationally designed AuNCs and their application toward high resolution imaging of vasculatures and hard and soft tissue structures for identification of pathological conditions such as stroke and injury. Further, recent employment of these AuNCs in the rapidly growing field of tumor theranostics is also summarized. Final remarks are provided on the scope for improvement in their optical properties and persisting challenges for clinical translation.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging