{"title":"Molecular Weights of Dissolved Organic Matter Significantly Affect Photoaging of Microplastics","authors":"Jianrui Pan, Shilong Zhang, Xinran Qiu, Ling Ding, Xujun Liang and Xuetao Guo*, ","doi":"10.1021/acs.est.4c0460810.1021/acs.est.4c04608","DOIUrl":null,"url":null,"abstract":"<p >The fate of ubiquitous microplastics (MPs) is largely influenced by dissolved organic matter (DOM) in aquatic environments, which has garnered significant attention. The reactivity of DOM is reported to be greatly regulated by molecular weights (MWs), yet little is known about the effects of different MW DOM on MP aging. Here, the aging behavior of polystyrene MPs (PSMPs) in the presence of different MW fulvic acids (FAs) and humic acids (HAs) was systematically investigated. Under ultraviolet (UV) illumination, O/C of PSMPs aged for 96 h surged from 0.008 to 0.146 in the lower MW FA (FA<sub><1kDa</sub>) treatment, suggesting significant PSMP aging. However, FA exhibited a stronger effect on facilitating PSMP photoaging than HA, which can be attributed to the fact that FA<sub><1kDa</sub> contains more quinone and phenolic moieties, demonstrating a higher redox capacity. Meanwhile, compared to other fractions, FA<sub><1kDa</sub> was more actively involved in the increase of different reactive species yields by 50–290%, including •OH, which plays a key role in PSMP photoaging, and contributed to a 25% increase in electron-donating capacity (EDC). This study lays a theoretical foundation for a better understanding of the environmental fate of MPs.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 31","pages":"13973–13985 13973–13985"},"PeriodicalIF":11.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c04608","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The fate of ubiquitous microplastics (MPs) is largely influenced by dissolved organic matter (DOM) in aquatic environments, which has garnered significant attention. The reactivity of DOM is reported to be greatly regulated by molecular weights (MWs), yet little is known about the effects of different MW DOM on MP aging. Here, the aging behavior of polystyrene MPs (PSMPs) in the presence of different MW fulvic acids (FAs) and humic acids (HAs) was systematically investigated. Under ultraviolet (UV) illumination, O/C of PSMPs aged for 96 h surged from 0.008 to 0.146 in the lower MW FA (FA<1kDa) treatment, suggesting significant PSMP aging. However, FA exhibited a stronger effect on facilitating PSMP photoaging than HA, which can be attributed to the fact that FA<1kDa contains more quinone and phenolic moieties, demonstrating a higher redox capacity. Meanwhile, compared to other fractions, FA<1kDa was more actively involved in the increase of different reactive species yields by 50–290%, including •OH, which plays a key role in PSMP photoaging, and contributed to a 25% increase in electron-donating capacity (EDC). This study lays a theoretical foundation for a better understanding of the environmental fate of MPs.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.