Fluorescence Enhancement of Single V2 Centers in a 4H-SiC Cavity Antenna

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jonathan Körber*, Jonah Heiler, Philipp Fuchs, Philipp Flad, Erik Hesselmeier, Pierre Kuna, Jawad Ul-Hassan, Wolfgang Knolle, Christoph Becher, Florian Kaiser* and Jörg Wrachtrup, 
{"title":"Fluorescence Enhancement of Single V2 Centers in a 4H-SiC Cavity Antenna","authors":"Jonathan Körber*,&nbsp;Jonah Heiler,&nbsp;Philipp Fuchs,&nbsp;Philipp Flad,&nbsp;Erik Hesselmeier,&nbsp;Pierre Kuna,&nbsp;Jawad Ul-Hassan,&nbsp;Wolfgang Knolle,&nbsp;Christoph Becher,&nbsp;Florian Kaiser* and Jörg Wrachtrup,&nbsp;","doi":"10.1021/acs.nanolett.4c0216210.1021/acs.nanolett.4c02162","DOIUrl":null,"url":null,"abstract":"<p >Solid state quantum emitters are a prime candidate in distributed quantum technologies since they inherently provide a spin–photon interface. An ongoing challenge in the field, however, is the low photon extraction due to the high refractive index of typical host materials. This challenge can be overcome using photonic structures. Here, we report the integration of V2 centers in a cavity-based optical antenna. The structure consists of a silver-coated, 135 nm-thin 4H-SiC membrane functioning as a planar cavity with a broadband resonance yielding a theoretical photon collection enhancement factor of ∼34. The planar geometry allows us to identify over 20 single V2 centers at room temperature with a mean (maximum) count rate enhancement factor of 9 (15). Moreover, we observe 10 V2 centers with a mean absorption line width below 80 MHz at cryogenic temperatures. These results demonstrate a photon collection enhancement that is robust to the lateral emitter position.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 30","pages":"9289–9295 9289–9295"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02162","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid state quantum emitters are a prime candidate in distributed quantum technologies since they inherently provide a spin–photon interface. An ongoing challenge in the field, however, is the low photon extraction due to the high refractive index of typical host materials. This challenge can be overcome using photonic structures. Here, we report the integration of V2 centers in a cavity-based optical antenna. The structure consists of a silver-coated, 135 nm-thin 4H-SiC membrane functioning as a planar cavity with a broadband resonance yielding a theoretical photon collection enhancement factor of ∼34. The planar geometry allows us to identify over 20 single V2 centers at room temperature with a mean (maximum) count rate enhancement factor of 9 (15). Moreover, we observe 10 V2 centers with a mean absorption line width below 80 MHz at cryogenic temperatures. These results demonstrate a photon collection enhancement that is robust to the lateral emitter position.

Abstract Image

4H-SiC 腔天线中单个 V2 中心的荧光增强
固态量子发射器是分布式量子技术的主要候选者,因为它们本身提供了自旋光子接口。然而,该领域一直面临的一个挑战是,由于典型主材料的折射率较高,光子提取率较低。利用光子结构可以克服这一挑战。在此,我们报告了在基于空腔的光学天线中集成 V2 中心的情况。该结构由一个银涂层、135 nm 薄的 4H-SiC 膜组成,作为一个平面腔体,具有宽带共振,理论光子收集增强因子为 ∼34。平面几何使我们能够在室温下识别出 20 多个单个 V2 中心,其平均(最大)计数率增强因子为 9 (15)。此外,在低温条件下,我们还观测到 10 个平均吸收线宽低于 80 MHz 的 V2 中心。这些结果表明,光子收集能力的增强与发射器的横向位置密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信