Claudia Cirillo, Mariagrazia Iuliano, Davide Scarpa*, Luca Gallucci, Claudia Florio, Gaetano Maffei, Andrea Loi and Maria Sarno,
{"title":"Nanoparticle Usage in Leather Processing: Worker Safety and Health","authors":"Claudia Cirillo, Mariagrazia Iuliano, Davide Scarpa*, Luca Gallucci, Claudia Florio, Gaetano Maffei, Andrea Loi and Maria Sarno, ","doi":"10.1021/acs.chas.4c0000610.1021/acs.chas.4c00006","DOIUrl":null,"url":null,"abstract":"<p >The focus on the leather market has recently been on the rise due to the global increase in demand for leather products, driven by rising disposable income levels and improving standards of living among the expanding middle-class population. To enhance the performance of the final leather product, we have employed nanoparticles (NPs) across various stages of leather manufacturing. Specifically, in the finishing process─the ultimate stage of leather production─numerous studies have underscored the significance of Ag, TiO<sub>2</sub>, and SiO<sub>2</sub> NPs in significantly enhancing various characteristics of leather. On the other hand, the rapid growth in the application of NPs to leather finishing, and more in general in the leather industry, has occurred concomitantly with increased attention toward potential risks associated with their usage in biological systems and ecosystems. Given these considerations, the objective of this critical review is to provide a detailed and thorough analysis of the factors influencing the toxicity and cytotoxicity of nanoparticles commonly adopted in the leather finishing stage, with particular emphasis on Ag, TiO<sub>2,</sub> and SiO<sub>2</sub> NPs, along with their effects on the safety and health of workers. Moreover, the following study aims to identify necessary precautions and safety measures that the leather industry should implement when handling nanoparticles during the finishing stage.</p>","PeriodicalId":73648,"journal":{"name":"Journal of chemical health & safety","volume":"31 4","pages":"276–290 276–290"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical health & safety","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.4c00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The focus on the leather market has recently been on the rise due to the global increase in demand for leather products, driven by rising disposable income levels and improving standards of living among the expanding middle-class population. To enhance the performance of the final leather product, we have employed nanoparticles (NPs) across various stages of leather manufacturing. Specifically, in the finishing process─the ultimate stage of leather production─numerous studies have underscored the significance of Ag, TiO2, and SiO2 NPs in significantly enhancing various characteristics of leather. On the other hand, the rapid growth in the application of NPs to leather finishing, and more in general in the leather industry, has occurred concomitantly with increased attention toward potential risks associated with their usage in biological systems and ecosystems. Given these considerations, the objective of this critical review is to provide a detailed and thorough analysis of the factors influencing the toxicity and cytotoxicity of nanoparticles commonly adopted in the leather finishing stage, with particular emphasis on Ag, TiO2, and SiO2 NPs, along with their effects on the safety and health of workers. Moreover, the following study aims to identify necessary precautions and safety measures that the leather industry should implement when handling nanoparticles during the finishing stage.