Ultrasound Induced Enhancement of Biological Gas-to-Liquid Process for Methanol Synthesis from Methane Using Methylotuvimicrobium buryatense 5GB1C

Aradhana Priyadarsini, Kaustubh Chandrakant Khaire, Aditya Singh Chauhan, Sachin Kumar, Lepakshi Barbora, Subhrangsu Sundar Maitra and Vijayanand S. Moholkar*, 
{"title":"Ultrasound Induced Enhancement of Biological Gas-to-Liquid Process for Methanol Synthesis from Methane Using Methylotuvimicrobium buryatense 5GB1C","authors":"Aradhana Priyadarsini,&nbsp;Kaustubh Chandrakant Khaire,&nbsp;Aditya Singh Chauhan,&nbsp;Sachin Kumar,&nbsp;Lepakshi Barbora,&nbsp;Subhrangsu Sundar Maitra and Vijayanand S. Moholkar*,&nbsp;","doi":"10.1021/acssusresmgt.4c0011610.1021/acssusresmgt.4c00116","DOIUrl":null,"url":null,"abstract":"<p >Methanol is a potential alternate liquid transportation fuel. Conventional processes for methanol production from methane are energy-intensive. Microbial conversion of methane to methanol (Biological Gas-To-Liquid process) is a potential eco-friendly alternative. In this study, we have reported the intensification of methane fermentation to methanol (24 h batch mode) by <i>Methylotuvimicrobium buryatense</i> 5GB1C using 33 kHz sonication. The fermentation process was optimized for the sonication treatment time and duty cycle. A maximum titer of 20 mM (127.5 mg methanol/g dry cell weight biomass) was obtained in a 10 h sonication treatment at a 10% duty cycle, which was ∼57% higher than in control experiments. A mechanistic study of this result using <i>pmoA</i> gene expression (measured using qRT-PCR) and total protein analysis (sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)) revealed that the overexpression of the <i>pmoA</i> gene (therefore, <i>pmoCAB</i> operon) led to the overexpression of the particulate methane monooxygenase (pMMO) enzyme in the metabolic pathway of <i>M. buryatense</i> resulting in the production of pMMO in higher quantities than that in control experiments. The ultimate manifestation of these phenomena was faster enzyme kinetics and high methanol yield.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 7","pages":"1493–1500 1493–1500"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol is a potential alternate liquid transportation fuel. Conventional processes for methanol production from methane are energy-intensive. Microbial conversion of methane to methanol (Biological Gas-To-Liquid process) is a potential eco-friendly alternative. In this study, we have reported the intensification of methane fermentation to methanol (24 h batch mode) by Methylotuvimicrobium buryatense 5GB1C using 33 kHz sonication. The fermentation process was optimized for the sonication treatment time and duty cycle. A maximum titer of 20 mM (127.5 mg methanol/g dry cell weight biomass) was obtained in a 10 h sonication treatment at a 10% duty cycle, which was ∼57% higher than in control experiments. A mechanistic study of this result using pmoA gene expression (measured using qRT-PCR) and total protein analysis (sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)) revealed that the overexpression of the pmoA gene (therefore, pmoCAB operon) led to the overexpression of the particulate methane monooxygenase (pMMO) enzyme in the metabolic pathway of M. buryatense resulting in the production of pMMO in higher quantities than that in control experiments. The ultimate manifestation of these phenomena was faster enzyme kinetics and high methanol yield.

Abstract Image

超声波诱导增强生物气液分离工艺,利用埋地甲霉 5GB1C 从甲烷中合成甲醇
甲醇是一种潜在的替代液体运输燃料。利用甲烷生产甲醇的传统工艺是能源密集型的。用微生物将甲烷转化为甲醇(生物气液工艺)是一种潜在的生态友好型替代方法。在这项研究中,我们报告了利用 33 kHz 超声波强化 Methylotuvimicrobium buryatense 5GB1C 将甲烷发酵为甲醇(24 小时批处理模式)的情况。发酵过程中对超声处理时间和占空比进行了优化。在占空比为 10%的情况下,超声处理 10 小时后,获得的最大滴度为 20 毫摩尔(127.5 毫克甲醇/克细胞干重生物质),比对照实验高出 57%。利用 pmoA 基因表达(使用 qRT-PCR 测量)和总蛋白分析(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE))对这一结果进行的机理研究表明,pmoA 基因(因此是 pmoCAB 操作子)的过度表达导致了埋囊菌代谢途径中的微粒甲烷单加氧酶(pMMO)的过度表达,从而产生了甲醇。buryatense 的代谢途径中的微粒甲烷单加氧酶(pMMO)过度表达,导致 pMMO 的产生量高于对照实验。这些现象的最终表现是酶动力学更快,甲醇产量更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信