Larissa A. Casper, Katharina L. Deuter, Anja Rehse and Rainer F. Winter*,
{"title":"Dimerization of 9-Phenyl-ferroceno[2,3]indenylmethyl Radicals: Electrochemical and Spectroelectrochemical Studies","authors":"Larissa A. Casper, Katharina L. Deuter, Anja Rehse and Rainer F. Winter*, ","doi":"10.1021/acsorginorgau.3c0007010.1021/acsorginorgau.3c00070","DOIUrl":null,"url":null,"abstract":"<p >We report on three new 9-phenyl-substituted ferroceno[2,3]indenylmethylium dyes <b>1</b><sup><b>+</b></sup>–<b>3</b><sup><b>+</b></sup> with electron-donating (OMe, Me) or electron-withdrawing (CF<sub>3</sub>) substituents. Complexes <b>1</b><sup><b>+</b></sup>–<b>3</b><sup><b>+</b></sup> exist as racemic mixtures of <i>Rp</i> and <i>Sp</i> enantiomers. Pyramidalization at the methyl C atom in the precursor carbinol species <b>1-OH</b>–<b>3-OH</b> or the corresponding one-electron reduced radicals induces a second stereocenter, as the 9-phenyl substituent may reside in an <i>endo</i> or an <i>exo</i> position. Indeed, alcohol <b>2-OH</b> crystallizes as a racemate of <i>Rp</i>,<i>S</i> and <i>Sp</i>,<i>R</i> isomers. Cationic complexes <b>1</b><sup><b>+</b></sup>–<b>3</b><sup><b>+</b></sup> are of deep green color and show intense electronic absorption in the visible. The oxidation and reduction processes are thoroughly investigated by means of cyclic voltammetry and UV/vis/NIR spectroelectrochemistry, the latter showing their electrochromic behavior. <i>T</i>-dependent EPR spectroscopy, EPR spin counting at 20 °C, as well as the UV/vis/NIR spectra of the reduced samples suggest that the one-electron reduced, neutral radicals dimerize nearly quantitatively (≥99.98%). Chemical reduction of <b>2</b><sup><b>+</b></sup> furnished an isomeric mixture of dimeric <b>2</b>–<b>2</b>. As was shown by cyclic voltammetry and UV/vis/NIR spectroelectrochemistry, the latter dimer redissociates to monomers <b>2</b><sup><b>+</b></sup> upon oxidation, thereby closing a reversible cycle of redox-induced C–C bond making and breaking.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report on three new 9-phenyl-substituted ferroceno[2,3]indenylmethylium dyes 1+–3+ with electron-donating (OMe, Me) or electron-withdrawing (CF3) substituents. Complexes 1+–3+ exist as racemic mixtures of Rp and Sp enantiomers. Pyramidalization at the methyl C atom in the precursor carbinol species 1-OH–3-OH or the corresponding one-electron reduced radicals induces a second stereocenter, as the 9-phenyl substituent may reside in an endo or an exo position. Indeed, alcohol 2-OH crystallizes as a racemate of Rp,S and Sp,R isomers. Cationic complexes 1+–3+ are of deep green color and show intense electronic absorption in the visible. The oxidation and reduction processes are thoroughly investigated by means of cyclic voltammetry and UV/vis/NIR spectroelectrochemistry, the latter showing their electrochromic behavior. T-dependent EPR spectroscopy, EPR spin counting at 20 °C, as well as the UV/vis/NIR spectra of the reduced samples suggest that the one-electron reduced, neutral radicals dimerize nearly quantitatively (≥99.98%). Chemical reduction of 2+ furnished an isomeric mixture of dimeric 2–2. As was shown by cyclic voltammetry and UV/vis/NIR spectroelectrochemistry, the latter dimer redissociates to monomers 2+ upon oxidation, thereby closing a reversible cycle of redox-induced C–C bond making and breaking.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.