Xin Li , Xiaoma Li , Jean-Michel Guldmann , Zhengwu Cai , Wei Liao , Chun Yang , Qingdong Qiu
{"title":"A novel approach to identify the microclimatic edge effect width of urban green spaces at the landscape level: A case study of Changsha, China","authors":"Xin Li , Xiaoma Li , Jean-Michel Guldmann , Zhengwu Cai , Wei Liao , Chun Yang , Qingdong Qiu","doi":"10.1016/j.ufug.2024.128462","DOIUrl":null,"url":null,"abstract":"<div><p>Microclimate (e.g., temperature and humidity) in urban green space (UGS) patches changes nonlinearly from the edge to the interior, displaying a microclimatic edge effect (MEE). Reducing the MEE width is an effective and practical strategy for UGS planning and management to enhance climatic benefits (e.g., cooling). However, cost-effective approaches are not available to quantify the MEE width, let alone explore its driving factors. This study proposes a novel and cost-effective method to quantify the MEE width, based on the relationship between climatic variables (e.g., temperature and humidity) and the percentage of remaining UGS after successive edge removals. The method was tested in the subtropical city of Changsha, China, considering air temperature (AT) and humidity. Its effectiveness was also tested using widely available land surface temperature (LST) datasets while considering different spatial resolutions of the UGS map (i.e., 1–10 m) and different analytical units (i.e., 1 km<sup>2</sup> grid and township census tract). Finally, the generalizability of this method was validated with data on six other representative Chinese cities. The results show that: (1) The estimated MEE widths for temperature and humidity in Changsha are about 8 m and 6 m, respectively. (2) The approach obtains consistent MEE widths irrespective of temperature types and analytical units. (3) A high spatial resolution UGS map (i.e., 1 m) is recommended for higher accuracy. (4) This approach effectively identifies MEE width in six other representative Chinese cities (Beijing, Chengdu, Shanghai, Shenyang, Wuhan, Xi’an), demonstrating its generalizability. This novel approach provides an easy and fast method to identify the MEE width at the landscape scale, which can help (1) better understand the relationship between UGS fragmentation and the urban microclimate, and (2) better plan and manage UGS to improve the urban microclimate.</p></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":"99 ","pages":"Article 128462"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866724002607","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Microclimate (e.g., temperature and humidity) in urban green space (UGS) patches changes nonlinearly from the edge to the interior, displaying a microclimatic edge effect (MEE). Reducing the MEE width is an effective and practical strategy for UGS planning and management to enhance climatic benefits (e.g., cooling). However, cost-effective approaches are not available to quantify the MEE width, let alone explore its driving factors. This study proposes a novel and cost-effective method to quantify the MEE width, based on the relationship between climatic variables (e.g., temperature and humidity) and the percentage of remaining UGS after successive edge removals. The method was tested in the subtropical city of Changsha, China, considering air temperature (AT) and humidity. Its effectiveness was also tested using widely available land surface temperature (LST) datasets while considering different spatial resolutions of the UGS map (i.e., 1–10 m) and different analytical units (i.e., 1 km2 grid and township census tract). Finally, the generalizability of this method was validated with data on six other representative Chinese cities. The results show that: (1) The estimated MEE widths for temperature and humidity in Changsha are about 8 m and 6 m, respectively. (2) The approach obtains consistent MEE widths irrespective of temperature types and analytical units. (3) A high spatial resolution UGS map (i.e., 1 m) is recommended for higher accuracy. (4) This approach effectively identifies MEE width in six other representative Chinese cities (Beijing, Chengdu, Shanghai, Shenyang, Wuhan, Xi’an), demonstrating its generalizability. This novel approach provides an easy and fast method to identify the MEE width at the landscape scale, which can help (1) better understand the relationship between UGS fragmentation and the urban microclimate, and (2) better plan and manage UGS to improve the urban microclimate.
期刊介绍:
Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries.
The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects:
-Form and functions of urban forests and other vegetation, including aspects of urban ecology.
-Policy-making, planning and design related to urban forests and other vegetation.
-Selection and establishment of tree resources and other vegetation for urban environments.
-Management of urban forests and other vegetation.
Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.