Yongliang Zhou , Yiming Wei , Tianzhu Xiong , Zixuan Zhou , Zhen Yang , Xiao Lin , Wei Hu , Xiulong Wu , Chunyu Peng
{"title":"An 8b-Precison 16-Kb FDSOI 8T SRAM CIM macro based on time-domain for energy-efficient edge AI devices","authors":"Yongliang Zhou , Yiming Wei , Tianzhu Xiong , Zixuan Zhou , Zhen Yang , Xiao Lin , Wei Hu , Xiulong Wu , Chunyu Peng","doi":"10.1016/j.mejo.2024.106308","DOIUrl":null,"url":null,"abstract":"<div><p>Compute-in-memory has been increasingly appreciated by researchers as a well-suited hardware accelerator in convolutional neural networks (CNNs), because it can achieve low power consumption and high inference accuracy. This work presents a novel TD-CIM structure using:1) A Capacitor Charging scheme that uses Compact 8T Model for multiply-and-accumulate (MAC) Operations with serials inputs in Time Domain Level; 2) a new replicated bit-line time-domain converter (RBL-TDC) to achieve the quantization of the multiply-accumulate operations with high accuracy; 3) A 22 nm FD-SOI 16 Kb TD-CIM macro fabricated using foundry provided compact 8T-SRAM cells, which achieves normalized energy efficiency(EF) of 5816.5 TOPS/W, normalized area efficiency(64TOPS/mm<sup>2</sup>), and 8-bit weight for 8-bit serials inputs with 64 accumulations per cycle, as well as output precision(14b) in the MAC operation. This work also obtains an inference accuracy of 92.57 % on the VGG-16 network using the Cifar10 dataset over PVT variations.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124000122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Compute-in-memory has been increasingly appreciated by researchers as a well-suited hardware accelerator in convolutional neural networks (CNNs), because it can achieve low power consumption and high inference accuracy. This work presents a novel TD-CIM structure using:1) A Capacitor Charging scheme that uses Compact 8T Model for multiply-and-accumulate (MAC) Operations with serials inputs in Time Domain Level; 2) a new replicated bit-line time-domain converter (RBL-TDC) to achieve the quantization of the multiply-accumulate operations with high accuracy; 3) A 22 nm FD-SOI 16 Kb TD-CIM macro fabricated using foundry provided compact 8T-SRAM cells, which achieves normalized energy efficiency(EF) of 5816.5 TOPS/W, normalized area efficiency(64TOPS/mm2), and 8-bit weight for 8-bit serials inputs with 64 accumulations per cycle, as well as output precision(14b) in the MAC operation. This work also obtains an inference accuracy of 92.57 % on the VGG-16 network using the Cifar10 dataset over PVT variations.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.