Deep Image: A precious image based deep learning method for online malware detection in IoT environment

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"Deep Image: A precious image based deep learning method for online malware detection in IoT environment","authors":"","doi":"10.1016/j.iot.2024.101300","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we address the challenge of online malware detection for IoT devices. We propose a method that monitors malware behavior, extracts dynamic features, and converts them into sparse binary images for analysis. The primary problem is to identify the most effective approach among clustering, probabilistic, and deep learning methods for analyzing this unique image dataset. We extract dynamic features from the monitored malware behavior, transforming them into binary images, which are then subjected to three different analysis methods. The clustering, probabilistic, and deep learning approaches are compared and evaluated in terms of various metrics. Our study contributes insights into the performance of various online malware detection approaches for IoT devices. We demonstrate that deep learning outperforms other methods, achieving the best results in seven out of eight metrics. The results of our analysis reveal that the deep learning approach exhibits the highest accuracy in seven of the eight evaluated metrics. We found that the lattice-based approach consistently returns the maximum maliciousness level, which can be instrumental in label flipping scenarios.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002415","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we address the challenge of online malware detection for IoT devices. We propose a method that monitors malware behavior, extracts dynamic features, and converts them into sparse binary images for analysis. The primary problem is to identify the most effective approach among clustering, probabilistic, and deep learning methods for analyzing this unique image dataset. We extract dynamic features from the monitored malware behavior, transforming them into binary images, which are then subjected to three different analysis methods. The clustering, probabilistic, and deep learning approaches are compared and evaluated in terms of various metrics. Our study contributes insights into the performance of various online malware detection approaches for IoT devices. We demonstrate that deep learning outperforms other methods, achieving the best results in seven out of eight metrics. The results of our analysis reveal that the deep learning approach exhibits the highest accuracy in seven of the eight evaluated metrics. We found that the lattice-based approach consistently returns the maximum maliciousness level, which can be instrumental in label flipping scenarios.

深度图像:基于珍贵图像的深度学习方法,用于物联网环境中的在线恶意软件检测
在本研究中,我们解决了物联网设备在线恶意软件检测的难题。我们提出了一种监测恶意软件行为、提取动态特征并将其转换为稀疏二进制图像以供分析的方法。首要问题是在聚类、概率和深度学习方法中找出最有效的方法来分析这一独特的图像数据集。我们从监测到的恶意软件行为中提取动态特征,将其转换为二进制图像,然后对其采用三种不同的分析方法。我们根据各种指标对聚类、概率和深度学习方法进行了比较和评估。我们的研究有助于深入了解各种物联网设备在线恶意软件检测方法的性能。我们证明,深度学习优于其他方法,在八项指标中的七项都取得了最佳结果。我们的分析结果表明,在八个评估指标中,深度学习方法在七个指标上表现出最高的准确性。我们发现,基于网格的方法始终能返回最大恶意级别,这在标签翻转场景中非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信