Fundamental experimental analysis of the ignition risk of sparks generated during collisions between small UAV propellers and personal protective equipment
{"title":"Fundamental experimental analysis of the ignition risk of sparks generated during collisions between small UAV propellers and personal protective equipment","authors":"Kosuke Yoshizaki , Hiroki Igarashi , Miguel Angel Salinas Escamilla , Ayumu Miyahara , Toshiro Hoshi , Kengo Takahashi , Toshiyuki Katsumi , Satoshi Kadowaki , Tetsuya Kimura","doi":"10.1016/j.jlp.2024.105397","DOIUrl":null,"url":null,"abstract":"<div><p>Small unmanned aerial vehicles (UAVs) are increasingly utilized in a variety of environments, including those containing flammable substances, where the risk of ignition is a significant concern. In this study, we investigate the risk of sparks generated by UAV propeller collisions with personal protective gear to ignite these gases. We utilized a high-speed infrared camera to measure the temperatures of sparks produced during such collisions. The experiments involved collisions between various types of protective gear and rotating propellers, during which spark generation was observed upon impact. The high-speed infrared camera recorded the spark temperatures at the moment of impact. The sparks produced by these collision reached temperatures ranging from 375 [°C] and 900 [°C], exceeding the auto-ignition temperatures of hydrogen, diesel oil, and gasoline vapors. Notably, even protective gear that did not produce visible sparks reached temperatures up to 375 [°C], which surpasses the auto-ignition temperatures of some flammable substances, such as gasoline and kerosene. Based on the experimental results, we discuss the potential risks of igniting hydrogen, diesel oil, gasoline, and kerosene due to propeller collisions with protective equipment.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"91 ","pages":"Article 105397"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950423024001554/pdfft?md5=9fcb83af3f9bb74c05ea13e21502c77c&pid=1-s2.0-S0950423024001554-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001554","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Small unmanned aerial vehicles (UAVs) are increasingly utilized in a variety of environments, including those containing flammable substances, where the risk of ignition is a significant concern. In this study, we investigate the risk of sparks generated by UAV propeller collisions with personal protective gear to ignite these gases. We utilized a high-speed infrared camera to measure the temperatures of sparks produced during such collisions. The experiments involved collisions between various types of protective gear and rotating propellers, during which spark generation was observed upon impact. The high-speed infrared camera recorded the spark temperatures at the moment of impact. The sparks produced by these collision reached temperatures ranging from 375 [°C] and 900 [°C], exceeding the auto-ignition temperatures of hydrogen, diesel oil, and gasoline vapors. Notably, even protective gear that did not produce visible sparks reached temperatures up to 375 [°C], which surpasses the auto-ignition temperatures of some flammable substances, such as gasoline and kerosene. Based on the experimental results, we discuss the potential risks of igniting hydrogen, diesel oil, gasoline, and kerosene due to propeller collisions with protective equipment.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.