Effect of sintering temperature on ceramic membrane fabricated using coal flyash and natural clay for lignin recovery

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"Effect of sintering temperature on ceramic membrane fabricated using coal flyash and natural clay for lignin recovery","authors":"","doi":"10.1016/j.cherd.2024.07.060","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the utilization of coal fly ash combined with natural clay as a precursor for creating ceramic membranes through the uniaxial compaction method, aiming at lignin separation. These membranes were sintered at varying temperatures from 600 to 1000 °C. Thermal Gravimetric Analysis (TGA) revealed the robust thermal stability of the membranes. Fourier Transform Infrared (FTIR) analysis affirmed the presence of silica and alumina within the membranes. X-ray Diffraction (XRD) peaks indicated the crystalline structure and the presence of metal oxides originating from the fly ash and clay components. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) images illustrated the porous nature and rough surface of the ceramic membranes. The average pore radius of the fabricated membrane expanded from 43.12 to 7.91 nm with increasing temperature. Concurrently, membrane flux decreased from 4.13 to 0.96 ×10<sup>−6</sup> m<sup>3</sup>/m<sup>2</sup> s with higher temperatures. Lower contact angles indicated the hydrophilic properties of membranes. All membranes exhibited superior corrosion resistance and negative zeta potential, owing to the significant silica content in the fly ash. Lignin separation efficiency increased from 65 % to 81 % with increasing temperatures. The optimal sintering temperature was determined to be 800 °C, achieving a lignin recovery greater than 76 % and a membrane permeability of about 7×10<sup>−9</sup> m<sup>3</sup>/m<sup>2</sup> s kPa. Thus, the fly ash-clay-based ultrafiltration membranes synthesized in this study offer the potential for lignin biomass recovery from biorefinery effluent.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224004520","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the utilization of coal fly ash combined with natural clay as a precursor for creating ceramic membranes through the uniaxial compaction method, aiming at lignin separation. These membranes were sintered at varying temperatures from 600 to 1000 °C. Thermal Gravimetric Analysis (TGA) revealed the robust thermal stability of the membranes. Fourier Transform Infrared (FTIR) analysis affirmed the presence of silica and alumina within the membranes. X-ray Diffraction (XRD) peaks indicated the crystalline structure and the presence of metal oxides originating from the fly ash and clay components. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) images illustrated the porous nature and rough surface of the ceramic membranes. The average pore radius of the fabricated membrane expanded from 43.12 to 7.91 nm with increasing temperature. Concurrently, membrane flux decreased from 4.13 to 0.96 ×10−6 m3/m2 s with higher temperatures. Lower contact angles indicated the hydrophilic properties of membranes. All membranes exhibited superior corrosion resistance and negative zeta potential, owing to the significant silica content in the fly ash. Lignin separation efficiency increased from 65 % to 81 % with increasing temperatures. The optimal sintering temperature was determined to be 800 °C, achieving a lignin recovery greater than 76 % and a membrane permeability of about 7×10−9 m3/m2 s kPa. Thus, the fly ash-clay-based ultrafiltration membranes synthesized in this study offer the potential for lignin biomass recovery from biorefinery effluent.

烧结温度对利用粉煤灰和天然粘土制造的木质素回收陶瓷膜的影响
本研究探讨了如何利用粉煤灰和天然粘土作为前体,通过单轴压制法制造陶瓷膜,以分离木质素。这些陶瓷膜在 600 至 1000 °C 的不同温度下烧结。热重分析(TGA)显示了陶瓷膜强大的热稳定性。傅立叶变换红外(FTIR)分析证实了膜中二氧化硅和氧化铝的存在。X 射线衍射 (XRD) 峰值显示了结晶结构以及源自粉煤灰和粘土成分的金属氧化物的存在。扫描电子显微镜(SEM)和原子力显微镜(AFM)图像显示了陶瓷膜的多孔性和粗糙表面。随着温度的升高,制造的膜的平均孔半径从 43.12 纳米扩大到 7.91 纳米。同时,随着温度升高,膜通量从 4.13 ×10-6 m3/m2 s 下降到 0.96 ×10-6 m3/m2 s。较低的接触角表明膜具有亲水性。由于粉煤灰中含有大量二氧化硅,所有膜都表现出卓越的耐腐蚀性和负 zeta 电位。随着温度的升高,木质素分离效率从 65% 提高到 81%。最佳烧结温度为 800 ℃,木质素回收率超过 76%,膜渗透率约为 7×10-9 m3/m2 s kPa。因此,本研究中合成的粉煤灰-粘土基超滤膜具有从生物精炼废水中回收木质素生物质的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信