Integrality of the higher Rademacher symbols

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cormac O'Sullivan
{"title":"Integrality of the higher Rademacher symbols","authors":"Cormac O'Sullivan","doi":"10.1016/j.aim.2024.109876","DOIUrl":null,"url":null,"abstract":"<div><p>Rademacher symbols may be defined in terms of Dedekind sums, and give the value at zero of the zeta function associated to a narrow ideal class of a real quadratic field. Duke extended these symbols to give the zeta function values at all negative integers. Here we prove Duke's conjecture that these higher Rademacher symbols are integer valued, making the above zeta value denominators as simple as the corresponding Riemann zeta value denominators. The proof uses detailed properties of Bernoulli numbers, including a generalization of the Kummer congruences.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003918","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rademacher symbols may be defined in terms of Dedekind sums, and give the value at zero of the zeta function associated to a narrow ideal class of a real quadratic field. Duke extended these symbols to give the zeta function values at all negative integers. Here we prove Duke's conjecture that these higher Rademacher symbols are integer valued, making the above zeta value denominators as simple as the corresponding Riemann zeta value denominators. The proof uses detailed properties of Bernoulli numbers, including a generalization of the Kummer congruences.

高阶拉德马赫符号的积分性
拉德马赫符号可以用戴德金和来定义,并给出与实二次型域的窄理想类相关的zeta函数的零点值。杜克扩展了这些符号,给出了zeta函数在所有负整数处的值。在这里,我们证明了杜克的猜想,即这些更高的拉德马赫符号是整数值,使得上述zeta值分母与相应的黎曼zeta值分母一样简单。证明使用了伯努利数的详细性质,包括库默全等的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信