Analytical modeling, solution and experimental validation of high-velocity impact properties of composite hexagonal auxetic honeycomb cylindrical shells

IF 4.4 2区 工程技术 Q1 MECHANICS
Hui Li , Yichen Deng , Zelin Li , Jin Zhou , Haijun Wang , Shaoming Wang , Haiyang Zhang , Hang Cao , Xiangping Wang , Qingkai Han , Zhongwei Guan
{"title":"Analytical modeling, solution and experimental validation of high-velocity impact properties of composite hexagonal auxetic honeycomb cylindrical shells","authors":"Hui Li ,&nbsp;Yichen Deng ,&nbsp;Zelin Li ,&nbsp;Jin Zhou ,&nbsp;Haijun Wang ,&nbsp;Shaoming Wang ,&nbsp;Haiyang Zhang ,&nbsp;Hang Cao ,&nbsp;Xiangping Wang ,&nbsp;Qingkai Han ,&nbsp;Zhongwei Guan","doi":"10.1016/j.euromechsol.2024.105413","DOIUrl":null,"url":null,"abstract":"<div><p>Both theoretical and experimental studies are performed to investigate the impact properties of composite hexagonal auxetic honeycomb cylindrical shells subjected to an internal high-velocity projectile impact. Firstly, an analytical model of composite cylindrical shells with two fiber-reinforced polymer (FRP) skins and a hexagonal auxetic honeycomb core (HAHC) is built to anticipate the high-velocity impact properties, with the delamination and fracture energy absorption mechanisms of the skin and the core being considered. A strain-rate fitting function method is proposed to determine the material properties of the FRP skins and the core considering the strain-rate effect. Reddy's higher-order shear deformation theory is utilized to define the displacement of any point of the structure. Also, an improved Gibson theory is applied to derive the equivalent elastic moduli and Poisson's ratios of the HAHC. A detailed experimental validation is conducted on such shell specimens based on a high-velocity impact experimental system to validate the analytical model, in which comprehensive error analysis is discussed. Finally, the influence of critical geometric parameters of the projectile and the studied shell on its impact characteristics is evaluated and some crucial conclusions are provided to enhance impact resistance.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"108 ","pages":"Article 105413"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824001931","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Both theoretical and experimental studies are performed to investigate the impact properties of composite hexagonal auxetic honeycomb cylindrical shells subjected to an internal high-velocity projectile impact. Firstly, an analytical model of composite cylindrical shells with two fiber-reinforced polymer (FRP) skins and a hexagonal auxetic honeycomb core (HAHC) is built to anticipate the high-velocity impact properties, with the delamination and fracture energy absorption mechanisms of the skin and the core being considered. A strain-rate fitting function method is proposed to determine the material properties of the FRP skins and the core considering the strain-rate effect. Reddy's higher-order shear deformation theory is utilized to define the displacement of any point of the structure. Also, an improved Gibson theory is applied to derive the equivalent elastic moduli and Poisson's ratios of the HAHC. A detailed experimental validation is conducted on such shell specimens based on a high-velocity impact experimental system to validate the analytical model, in which comprehensive error analysis is discussed. Finally, the influence of critical geometric parameters of the projectile and the studied shell on its impact characteristics is evaluated and some crucial conclusions are provided to enhance impact resistance.

复合六边形辅助蜂窝圆柱壳高速冲击特性的分析建模、求解和实验验证
本研究通过理论和实验研究了复合材料六角形辅助蜂窝圆柱壳在受到内部高速弹丸冲击时的冲击特性。首先,建立了具有两个纤维增强聚合物(FRP)表皮和一个六边形辅助蜂窝芯(HAHC)的复合材料圆柱壳的分析模型,以预测其高速冲击性能,并考虑了表皮和芯的分层和断裂吸能机制。考虑到应变速率效应,提出了一种应变速率拟合函数方法来确定玻璃钢表皮和芯材的材料特性。利用 Reddy 的高阶剪切变形理论来定义结构任意点的位移。此外,还应用改进的吉布森理论推导出 HAHC 的等效弹性模量和泊松比。在高速冲击实验系统的基础上,对这种壳体试样进行了详细的实验验证,以验证分析模型,其中讨论了综合误差分析。最后,评估了弹丸和所研究弹壳的关键几何参数对其冲击特性的影响,并得出了一些重要结论,以增强其抗冲击性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信