Hui Li , Yichen Deng , Zelin Li , Jin Zhou , Haijun Wang , Shaoming Wang , Haiyang Zhang , Hang Cao , Xiangping Wang , Qingkai Han , Zhongwei Guan
{"title":"Analytical modeling, solution and experimental validation of high-velocity impact properties of composite hexagonal auxetic honeycomb cylindrical shells","authors":"Hui Li , Yichen Deng , Zelin Li , Jin Zhou , Haijun Wang , Shaoming Wang , Haiyang Zhang , Hang Cao , Xiangping Wang , Qingkai Han , Zhongwei Guan","doi":"10.1016/j.euromechsol.2024.105413","DOIUrl":null,"url":null,"abstract":"<div><p>Both theoretical and experimental studies are performed to investigate the impact properties of composite hexagonal auxetic honeycomb cylindrical shells subjected to an internal high-velocity projectile impact. Firstly, an analytical model of composite cylindrical shells with two fiber-reinforced polymer (FRP) skins and a hexagonal auxetic honeycomb core (HAHC) is built to anticipate the high-velocity impact properties, with the delamination and fracture energy absorption mechanisms of the skin and the core being considered. A strain-rate fitting function method is proposed to determine the material properties of the FRP skins and the core considering the strain-rate effect. Reddy's higher-order shear deformation theory is utilized to define the displacement of any point of the structure. Also, an improved Gibson theory is applied to derive the equivalent elastic moduli and Poisson's ratios of the HAHC. A detailed experimental validation is conducted on such shell specimens based on a high-velocity impact experimental system to validate the analytical model, in which comprehensive error analysis is discussed. Finally, the influence of critical geometric parameters of the projectile and the studied shell on its impact characteristics is evaluated and some crucial conclusions are provided to enhance impact resistance.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"108 ","pages":"Article 105413"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824001931","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Both theoretical and experimental studies are performed to investigate the impact properties of composite hexagonal auxetic honeycomb cylindrical shells subjected to an internal high-velocity projectile impact. Firstly, an analytical model of composite cylindrical shells with two fiber-reinforced polymer (FRP) skins and a hexagonal auxetic honeycomb core (HAHC) is built to anticipate the high-velocity impact properties, with the delamination and fracture energy absorption mechanisms of the skin and the core being considered. A strain-rate fitting function method is proposed to determine the material properties of the FRP skins and the core considering the strain-rate effect. Reddy's higher-order shear deformation theory is utilized to define the displacement of any point of the structure. Also, an improved Gibson theory is applied to derive the equivalent elastic moduli and Poisson's ratios of the HAHC. A detailed experimental validation is conducted on such shell specimens based on a high-velocity impact experimental system to validate the analytical model, in which comprehensive error analysis is discussed. Finally, the influence of critical geometric parameters of the projectile and the studied shell on its impact characteristics is evaluated and some crucial conclusions are provided to enhance impact resistance.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.