{"title":"Open-closed single-tube on-beam tuning-fork-enhanced fiber-optic photoacoustic spectroscopy","authors":"Yufeng Pan , Lujun Fu , Jiangshan Zhang , Ping Lu","doi":"10.1016/j.pacs.2024.100639","DOIUrl":null,"url":null,"abstract":"<div><p>A proof-of-concept on-beam tuning-fork-enhanced photoacoustic sensor based on an open-closed single-tube acoustic-microresonator (AmR) was proposed and investigated for the first time, to the best of our knowledge. Due to the high acoustic amplification effect, the open-closed AmR improved the detection sensitivity by 54 times with respect to the bare tuning fork (TF). Compared to traditional dual-tube/single-tube on-beam spectrophone configuration, the developed approach significantly facilitates the laser beam alignment and reduces the sensor size and gas consumption. A 6.6 kHz low-frequency custom aluminum alloy TF was employed as the acoustic transducer to detect the photoacoustic signal. The vibration of TF was measured by a fiber-optic Fabry-Pérot (FP) interferometer (FPI). The modulation depth, tube length and laser power were experimentally optimized and evaluated in detail. An acetylene (C<sub>2</sub>H<sub>2</sub>) 1σ minimum detection limit (MDL) of 6.3 ppb was obtained with a high laser power of ∼ 500 mW, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 6.5 × 10<sup>−9</sup> cm<sup>−1</sup> W/Hz<sup>1/2</sup>. The compact spectrophone size and all-fiber measurement method can make the PAS-based sensor have great application prospects in dissolved gases detection in transformer oil, remote gas detection, space-limited gas detection, and etc.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"39 ","pages":"Article 100639"},"PeriodicalIF":7.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597924000569/pdfft?md5=6d4cffa5677e7afef3c3bb8325f235ac&pid=1-s2.0-S2213597924000569-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000569","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A proof-of-concept on-beam tuning-fork-enhanced photoacoustic sensor based on an open-closed single-tube acoustic-microresonator (AmR) was proposed and investigated for the first time, to the best of our knowledge. Due to the high acoustic amplification effect, the open-closed AmR improved the detection sensitivity by 54 times with respect to the bare tuning fork (TF). Compared to traditional dual-tube/single-tube on-beam spectrophone configuration, the developed approach significantly facilitates the laser beam alignment and reduces the sensor size and gas consumption. A 6.6 kHz low-frequency custom aluminum alloy TF was employed as the acoustic transducer to detect the photoacoustic signal. The vibration of TF was measured by a fiber-optic Fabry-Pérot (FP) interferometer (FPI). The modulation depth, tube length and laser power were experimentally optimized and evaluated in detail. An acetylene (C2H2) 1σ minimum detection limit (MDL) of 6.3 ppb was obtained with a high laser power of ∼ 500 mW, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 6.5 × 10−9 cm−1 W/Hz1/2. The compact spectrophone size and all-fiber measurement method can make the PAS-based sensor have great application prospects in dissolved gases detection in transformer oil, remote gas detection, space-limited gas detection, and etc.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.