A note on expansions of q-exponential equations and q-Hardy–Hille type formulas

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Jian Cao , Qi Bao , Sama Arjika
{"title":"A note on expansions of q-exponential equations and q-Hardy–Hille type formulas","authors":"Jian Cao ,&nbsp;Qi Bao ,&nbsp;Sama Arjika","doi":"10.1016/j.bulsci.2024.103489","DOIUrl":null,"url":null,"abstract":"<div><p>By using noncommutative <em>q</em>-analogue of binomial theorem, we construct new <em>q</em>-exponential operators for <em>q</em>-Laguerre polynomials and deduce expansions of <em>q</em>-exponential equations, which lead us to use a systematic method for studying summations and integrals involving <em>q</em>-Laguerre polynomials, such as the Rogers formula, Hardy–Hille formula, mixed-type, <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> type generating functions for <em>q</em>-Laguerre polynomials and transformational identity. We generalize some results of [Sci. China Math. <strong>66</strong>(2023), 1199–1216] and [Adv. Math. <strong>131</strong>(1997), 93–187].</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103489"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001076","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

By using noncommutative q-analogue of binomial theorem, we construct new q-exponential operators for q-Laguerre polynomials and deduce expansions of q-exponential equations, which lead us to use a systematic method for studying summations and integrals involving q-Laguerre polynomials, such as the Rogers formula, Hardy–Hille formula, mixed-type, U(n+1) type generating functions for q-Laguerre polynomials and transformational identity. We generalize some results of [Sci. China Math. 66(2023), 1199–1216] and [Adv. Math. 131(1997), 93–187].

关于 q 指数方程展开式和 q-Hardy-Hille 型公式的说明
利用二项式定理的非交换q解析式,我们为q-拉盖尔多项式构造了新的q-指数算子,并推导出q-指数方程的展开式,从而用系统的方法研究涉及q-拉盖尔多项式的求和与积分,如罗杰斯公式、哈代-希尔公式、混合型、U(n+1)型q-拉盖尔多项式的生成函数和变换同一性。我们概括了 [Sci.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信