Looms

Pub Date : 2024-07-26 DOI:10.1016/j.disc.2024.114181
Ron Aharoni , Eli Berger , Joseph Briggs , He Guo , Shira Zerbib
{"title":"Looms","authors":"Ron Aharoni ,&nbsp;Eli Berger ,&nbsp;Joseph Briggs ,&nbsp;He Guo ,&nbsp;Shira Zerbib","doi":"10.1016/j.disc.2024.114181","DOIUrl":null,"url":null,"abstract":"<div><p>A pair <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> of hypergraphs is called <em>orthogonal</em> if <span><math><mo>|</mo><mi>a</mi><mo>∩</mo><mi>b</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span> for every pair of edges <span><math><mi>a</mi><mo>∈</mo><mi>A</mi><mo>,</mo><mspace></mspace><mi>b</mi><mo>∈</mo><mi>B</mi></math></span>. An orthogonal pair of hypergraphs is called a <em>loom</em> if each of its two members is the set of minimum covers of the other. Looms appear naturally in the context of a conjecture of Gyárfás and Lehel on the covering number of cross-intersecting hypergraphs. We study their properties and ways of construction, and prove special cases of a conjecture that if true would imply the Gyárfás–Lehel conjecture.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A pair (A,B) of hypergraphs is called orthogonal if |ab|=1 for every pair of edges aA,bB. An orthogonal pair of hypergraphs is called a loom if each of its two members is the set of minimum covers of the other. Looms appear naturally in the context of a conjecture of Gyárfás and Lehel on the covering number of cross-intersecting hypergraphs. We study their properties and ways of construction, and prove special cases of a conjecture that if true would imply the Gyárfás–Lehel conjecture.

分享
查看原文
织布机
如果每对边 a∈A,b∈B 的|a∩b|=1,则一对 (A,B) 超图称为正交。如果一对正交的超图中的每一个成员都是另一个成员的最小覆盖集,那么这对超图就叫做织布机。织布机很自然地出现在 Gyárfás 和 Lehel 关于交叉相交超图覆盖数的猜想中。我们研究了它们的性质和构造方法,并证明了一个猜想的特例,如果该猜想成立,则意味着 Gyárfás-Lehel 猜想成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信