Time will not tell: Temporal approaches for privacy-preserving trajectory publishing

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Anna Brauer , Ville Mäkinen , Laura Ruotsalainen , Juha Oksanen
{"title":"Time will not tell: Temporal approaches for privacy-preserving trajectory publishing","authors":"Anna Brauer ,&nbsp;Ville Mäkinen ,&nbsp;Laura Ruotsalainen ,&nbsp;Juha Oksanen","doi":"10.1016/j.compenvurbsys.2024.102154","DOIUrl":null,"url":null,"abstract":"<div><p>Fine-granular spatio-temporal trajectories, i.e., time-stamped sequences of locations, play a pivotal role in transport and urban analytics. However, sharing or publishing trajectory data of individuals raises concerns about location privacy given the potential for re-identification and unintentional dissemination of sensitive information. A key enabler for privacy breaches is precise temporal information. Thus, this study investigates the privacy-preserving capabilities of third-party free mechanisms protecting trajectories by exclusively targeting the temporal dimension. We compare a deterministic and a stochastic technique for shifting trajectories in time by adding an offset to each timestamp. The stochastic approach leverages a generalized version of differential privacy to render an individual's presence at any event plausibly deniable, obstructing re-identification attacks based on spatio-temporal side knowledge. Furthermore, we present a Markov chain-based speed perturbation technique that preserves dynamic patterns while obfuscating travel times and motion attributes. Using simulated re-identification attacks, we analyze privacy gains and contrast them with the utility loss. The results demonstrate a favorable utility-to-privacy ratio of the temporal techniques compared to established spatial and spatio-temporal approaches. This underlines the importance of accounting for temporal aspects in addition to spatial considerations in privacy-preserving trajectory publishing.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"112 ","pages":"Article 102154"},"PeriodicalIF":7.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0198971524000838/pdfft?md5=16cb423999940008fd0bf6d4fdc5e586&pid=1-s2.0-S0198971524000838-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000838","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-granular spatio-temporal trajectories, i.e., time-stamped sequences of locations, play a pivotal role in transport and urban analytics. However, sharing or publishing trajectory data of individuals raises concerns about location privacy given the potential for re-identification and unintentional dissemination of sensitive information. A key enabler for privacy breaches is precise temporal information. Thus, this study investigates the privacy-preserving capabilities of third-party free mechanisms protecting trajectories by exclusively targeting the temporal dimension. We compare a deterministic and a stochastic technique for shifting trajectories in time by adding an offset to each timestamp. The stochastic approach leverages a generalized version of differential privacy to render an individual's presence at any event plausibly deniable, obstructing re-identification attacks based on spatio-temporal side knowledge. Furthermore, we present a Markov chain-based speed perturbation technique that preserves dynamic patterns while obfuscating travel times and motion attributes. Using simulated re-identification attacks, we analyze privacy gains and contrast them with the utility loss. The results demonstrate a favorable utility-to-privacy ratio of the temporal techniques compared to established spatial and spatio-temporal approaches. This underlines the importance of accounting for temporal aspects in addition to spatial considerations in privacy-preserving trajectory publishing.

时间不会证明一切:隐私保护轨迹发布的时间方法
细粒度时空轨迹,即带有时间戳的位置序列,在交通和城市分析中发挥着举足轻重的作用。然而,共享或发布个人轨迹数据会引发位置隐私问题,因为有可能出现重新识别和无意传播敏感信息的情况。隐私泄露的一个关键因素是精确的时间信息。因此,本研究专门针对时间维度,研究了保护轨迹的第三方免费机制的隐私保护能力。我们比较了一种确定性技术和一种随机技术,通过在每个时间戳上添加偏移量来移动轨迹的时间。随机方法利用差分隐私的广义版本,使个人在任何事件中的存在都具有似是而非的可否认性,从而阻止了基于时空侧知识的重新识别攻击。此外,我们还提出了一种基于马尔可夫链的速度扰动技术,它既能保留动态模式,又能混淆旅行时间和运动属性。通过模拟重新识别攻击,我们分析了隐私收益,并将其与效用损失进行了对比。结果表明,与既有的空间和时空方法相比,时间技术的实用性与隐私性比率更高。这强调了在保护隐私的轨迹发布中,除了考虑空间因素外,还要考虑时间因素的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信