Investigation of foaming and mechanical properties of olefin block copolymer/talc/polypropylene composites in IMD/MIM processes

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Feng , Wei Guo , Kui Yan , Feng Zhao , Fankun Zeng , Jialong Zhao
{"title":"Investigation of foaming and mechanical properties of olefin block copolymer/talc/polypropylene composites in IMD/MIM processes","authors":"Tao Feng ,&nbsp;Wei Guo ,&nbsp;Kui Yan ,&nbsp;Feng Zhao ,&nbsp;Fankun Zeng ,&nbsp;Jialong Zhao","doi":"10.1016/j.mtla.2024.102185","DOIUrl":null,"url":null,"abstract":"<div><p>In advancing towards carbon neutrality in the automotive industry, polypropylene (PP) plays a crucial role in improving fuel efficiency and reducing carbon emissions as a pivotal lightweight material. However, PP faces challenges in microcellular foaming, including surface quality concerns, intricate molding parameters, and compromised mechanical strength, limiting its broader application. This research introduces an innovative strategy by integrating Olefin Block Copolymer (OBC) into the Talc/PP composite framework using In-mold Decoration/Microcellular Injection Molding (IMD/MIM) techniques to overcome these limitations. Experimental findings reveal that modulating the OBC proportion substantially enhances the PP composites' functionality. Notably, an inclusion of 10 wt% OBC decreases the material's viscosity, and raising the OBC level to 30 wt% markedly improves surface quality with fewer defects. Analyzing cell configuration confirms OBC's beneficial effect on cell size and distribution, particularly in the homogeneity of cells across the material's layers. For mechanical performance, incorporating OBC increased the impact strength from 13.2 kJ/m² to 17.9 kJ/m², highlighting OBC's potential in enhancing PP's toughness. This study enriches our understanding of optimizing PP-based microcellular foamed materials, supporting the development of next-generation lightweight materials. Future efforts will focus on further refinement of the OBC/Talc/PP system for superior performance and practical industrial viability.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102185"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924001820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In advancing towards carbon neutrality in the automotive industry, polypropylene (PP) plays a crucial role in improving fuel efficiency and reducing carbon emissions as a pivotal lightweight material. However, PP faces challenges in microcellular foaming, including surface quality concerns, intricate molding parameters, and compromised mechanical strength, limiting its broader application. This research introduces an innovative strategy by integrating Olefin Block Copolymer (OBC) into the Talc/PP composite framework using In-mold Decoration/Microcellular Injection Molding (IMD/MIM) techniques to overcome these limitations. Experimental findings reveal that modulating the OBC proportion substantially enhances the PP composites' functionality. Notably, an inclusion of 10 wt% OBC decreases the material's viscosity, and raising the OBC level to 30 wt% markedly improves surface quality with fewer defects. Analyzing cell configuration confirms OBC's beneficial effect on cell size and distribution, particularly in the homogeneity of cells across the material's layers. For mechanical performance, incorporating OBC increased the impact strength from 13.2 kJ/m² to 17.9 kJ/m², highlighting OBC's potential in enhancing PP's toughness. This study enriches our understanding of optimizing PP-based microcellular foamed materials, supporting the development of next-generation lightweight materials. Future efforts will focus on further refinement of the OBC/Talc/PP system for superior performance and practical industrial viability.

Abstract Image

烯烃嵌段共聚物/铜/聚丙烯复合材料在 IMD/MIM 工艺中的发泡和机械性能研究
在汽车行业实现碳中和的过程中,聚丙烯(PP)作为一种重要的轻质材料,在提高燃油效率和减少碳排放方面发挥着至关重要的作用。然而,聚丙烯在微孔发泡方面面临着各种挑战,包括表面质量问题、复杂的成型参数和机械强度受损,从而限制了其更广泛的应用。本研究采用模内装饰/微孔注塑成型(IMD/MIM)技术,将烯烃嵌段共聚物(OBC)集成到滑石粉/聚丙烯复合材料框架中,从而引入了一种创新策略,以克服这些限制。实验结果表明,调节 OBC 的比例可大大增强 PP 复合材料的功能。值得注意的是,加入 10 wt% 的 OBC 会降低材料的粘度,而将 OBC 的比例提高到 30 wt% 则会明显改善表面质量,减少缺陷。对细胞结构的分析证实了 OBC 对细胞大小和分布的有利影响,特别是在材料各层细胞的均匀性方面。在机械性能方面,加入 OBC 后,冲击强度从 13.2 kJ/m² 提高到 17.9 kJ/m²,突出了 OBC 在提高聚丙烯韧性方面的潜力。这项研究丰富了我们对优化基于聚丙烯的微孔发泡材料的理解,为下一代轻质材料的开发提供了支持。今后的工作重点将是进一步完善 OBC/Talc/PP 系统,以实现卓越的性能和实际的工业可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信