Normal 5-edge-coloring of some snarks superpositioned by Flower snarks

IF 1 3区 数学 Q1 MATHEMATICS
Jelena Sedlar , Riste Škrekovski
{"title":"Normal 5-edge-coloring of some snarks superpositioned by Flower snarks","authors":"Jelena Sedlar ,&nbsp;Riste Škrekovski","doi":"10.1016/j.ejc.2024.104038","DOIUrl":null,"url":null,"abstract":"<div><p>An edge <span><math><mi>e</mi></math></span> is normal in a proper edge-coloring of a cubic graph <span><math><mi>G</mi></math></span> if the number of distinct colors on four edges incident to <span><math><mi>e</mi></math></span> is 2 or <span><math><mrow><mn>4</mn><mo>.</mo></mrow></math></span> A normal edge-coloring of <span><math><mi>G</mi></math></span> is a proper edge-coloring in which every edge of <span><math><mi>G</mi></math></span> is normal. The Petersen Coloring Conjecture is equivalent to stating that every bridgeless cubic graph has a normal 5-edge-coloring. Since every 3-edge-coloring of a cubic graph is trivially normal, it is sufficient to consider only snarks to establish the conjecture. In this paper, we consider a class of superpositioned snarks obtained by choosing a cycle <span><math><mi>C</mi></math></span> in a snark <span><math><mi>G</mi></math></span> and superpositioning vertices of <span><math><mi>C</mi></math></span> by one of two simple supervertices and edges of <span><math><mi>C</mi></math></span> by superedges <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub></math></span>, where <span><math><mi>H</mi></math></span> is any snark and <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span> any pair of nonadjacent vertices of <span><math><mrow><mi>H</mi><mo>.</mo></mrow></math></span> For such superpositioned snarks, two sufficient conditions are given for the existence of a normal 5 -edge-coloring. The first condition yields a normal 5-edge-coloring for all hypohamiltonian snarks used as superedges, but only for some of the possible ways of connecting them. In particular, since the Flower snarks are hypohamiltonian, this consequently yields a normal 5-edge-coloring for many snarks superpositioned by the Flower snarks. The second sufficient condition is more demanding, but its application yields a normal 5-edge-colorings for all superpositions by the Flower snarks. The same class of snarks is considered in <em>Liu et al. (2021)</em> for the Berge–Fulkerson conjecture. Since we established that this class has a Petersen coloring, this immediately yields the result of the above mentioned paper.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001239","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An edge e is normal in a proper edge-coloring of a cubic graph G if the number of distinct colors on four edges incident to e is 2 or 4. A normal edge-coloring of G is a proper edge-coloring in which every edge of G is normal. The Petersen Coloring Conjecture is equivalent to stating that every bridgeless cubic graph has a normal 5-edge-coloring. Since every 3-edge-coloring of a cubic graph is trivially normal, it is sufficient to consider only snarks to establish the conjecture. In this paper, we consider a class of superpositioned snarks obtained by choosing a cycle C in a snark G and superpositioning vertices of C by one of two simple supervertices and edges of C by superedges Hx,y, where H is any snark and x,y any pair of nonadjacent vertices of H. For such superpositioned snarks, two sufficient conditions are given for the existence of a normal 5 -edge-coloring. The first condition yields a normal 5-edge-coloring for all hypohamiltonian snarks used as superedges, but only for some of the possible ways of connecting them. In particular, since the Flower snarks are hypohamiltonian, this consequently yields a normal 5-edge-coloring for many snarks superpositioned by the Flower snarks. The second sufficient condition is more demanding, but its application yields a normal 5-edge-colorings for all superpositions by the Flower snarks. The same class of snarks is considered in Liu et al. (2021) for the Berge–Fulkerson conjecture. Since we established that this class has a Petersen coloring, this immediately yields the result of the above mentioned paper.

由花偎叠加的某些偎的正常 5 边着色
在立方图 G 的适当边着色中,如果与 e 相连的四条边上的不同颜色数为 2 或 4,则边 e 为正常边。G 的正常边着色是指 G 的每条边都正常的适当边着色。彼得森着色猜想等同于说每个无桥立方图都有一个正常的 5 边着色。由于立方图的每个 3 边着色都是微不足道的正常着色,因此只需考虑蛇形图就足以建立该猜想。在本文中,我们考虑了一类叠加的星形图,即在星形图 G 中选择一个循环 C,然后用两个简单叠加顶点中的一个叠加 C 的顶点,用超边 Hx,y 叠加 C 的边,其中 H 是任意星形图,x,y 是 H 的任意一对非相邻顶点。对于这类叠加星形图,给出了存在正态 5 边着色的两个充分条件。第一个条件可以为所有用作超边界的次哈密顿斯纳克生成正常的 5 边着色,但只适用于连接它们的某些可能方式。特别是,由于 "花朵 "星形是次哈密顿星形,因此对于许多由 "花朵 "星形叠加的星形来说,都能得到正常的 5 边着色。第二个充分条件的要求更高,但应用它可以为所有由 "花朵 "斯纳克叠加的斯纳克生成正常的 5 边着色。针对 Berge-Fulkerson 猜想,Liu 等人(2021 年)也考虑了同一类斯纳克。由于我们确定了该类具有彼得森着色,因此立即得出了上述论文的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信