{"title":"Hadwiger’s conjecture and topological bounds","authors":"Raphael Steiner","doi":"10.1016/j.ejc.2024.104033","DOIUrl":null,"url":null,"abstract":"<div><p>The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph <span><math><mi>G</mi></math></span> that admits a topological lower bound of <span><math><mi>t</mi></math></span> on its chromatic number, contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mi>t</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></msub></math></span> as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).</p><p>We also prove that if for a graph <span><math><mi>G</mi></math></span> the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least <span><math><mi>t</mi></math></span>, then <span><math><mi>G</mi></math></span> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as a minor.</p><p>Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001185/pdfft?md5=fa3d2810594b912d86c5d392d33bb225&pid=1-s2.0-S0195669824001185-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001185","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph that admits a topological lower bound of on its chromatic number, contains as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).
We also prove that if for a graph the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least , then contains as a minor.
Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.