{"title":"On the combinatorics of r-chain minimal and maximal excludants","authors":"","doi":"10.1016/j.disc.2024.114187","DOIUrl":null,"url":null,"abstract":"<div><p>The minimal excludant (mex) of a partition was introduced by Grabner and Knopfmacher under the name ‘least gap’ and was recently revived by Andrews and Newman. It has been widely studied in recent years together with the complementary partition statistic maximal excludant (maex), first introduced by Chern. Among such recent works, the first and second authors along with Maji introduced and studied the <em>r</em>-chain minimal excludants (<em>r</em>-chain mex) which led to a new generalization of Euler's classical partition theorem and the sum-of-mex identity of Andrews and Newman. In this paper, we first give combinatorial proofs for these two results on <em>r</em>-chain mex. Then we also establish the associated identity for the <em>r</em>-chain maximal excludant, recently introduced by the first two authors and Maji, both analytically and combinatorially.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003182","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The minimal excludant (mex) of a partition was introduced by Grabner and Knopfmacher under the name ‘least gap’ and was recently revived by Andrews and Newman. It has been widely studied in recent years together with the complementary partition statistic maximal excludant (maex), first introduced by Chern. Among such recent works, the first and second authors along with Maji introduced and studied the r-chain minimal excludants (r-chain mex) which led to a new generalization of Euler's classical partition theorem and the sum-of-mex identity of Andrews and Newman. In this paper, we first give combinatorial proofs for these two results on r-chain mex. Then we also establish the associated identity for the r-chain maximal excludant, recently introduced by the first two authors and Maji, both analytically and combinatorially.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.