{"title":"Accuracy and Outcomes of a Novel Cut-Block Positioning Robotic-Arm Assisted System for Total Knee Arthroplasty: A Systematic Review and Meta-Analysis","authors":"","doi":"10.1016/j.artd.2024.101451","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The primary objective of this study was to determine the accuracy and precision of component positioning of the ROSA Robotic System for total knee arthroplasty (TKA).</p></div><div><h3>Methods</h3><p>A Preferred Reporting Items for Systematic Reviews and Meta-Analysis systematic review was conducted using 4 electronic databases (MEDLINE, EMBASE, Pubmed, and Cochrane Library) to identify all clinical and radiological studies reporting information about the use and results of the ROSA system. The criteria for inclusion were published research articles evaluating the accuracy of component positioning, learning curve, component alignment, complications, and functional outcomes in adults who underwent robotic-assisted TKA. The National Institutes of Health Quality Assessment Tool was used to evaluate the quality of all the included studies.</p></div><div><h3>Results</h3><p>A total of 26 studies were assessed for eligibility, and 17 met the inclusion criteria. Nine studies reported on the accuracy and precision of component positioning. The ROSA platform for TKA had a cutting error of less than 0.6<sup>°</sup> for all coronal and sagittal parameters. Pooled analysis demonstrated accuracy within 0.61-1.87<sup>°</sup> and precision within 0.97-1.34<sup>°</sup> when the final intraoperative plan was compared to postoperative radiographs with fewer outliers. Four studies reported improved functional scores with ROSA-assisted TKA than conventional TKA within 1 year of surgery. There was no difference in overall complication rates when compared to conventional TKA.</p></div><div><h3>Conclusions</h3><p>The ROSA system is both highly accurate and precise, with fewer outliers when analyzed at various time points, including postoperative standing radiographs. Future studies with robust methodology and longer follow-up are required to demonstrate whether these findings have any clinical benefits in the long term.</p></div>","PeriodicalId":37940,"journal":{"name":"Arthroplasty Today","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352344124001365/pdfft?md5=ec00c299a8e890be2287a966de8aa8ed&pid=1-s2.0-S2352344124001365-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthroplasty Today","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352344124001365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The primary objective of this study was to determine the accuracy and precision of component positioning of the ROSA Robotic System for total knee arthroplasty (TKA).
Methods
A Preferred Reporting Items for Systematic Reviews and Meta-Analysis systematic review was conducted using 4 electronic databases (MEDLINE, EMBASE, Pubmed, and Cochrane Library) to identify all clinical and radiological studies reporting information about the use and results of the ROSA system. The criteria for inclusion were published research articles evaluating the accuracy of component positioning, learning curve, component alignment, complications, and functional outcomes in adults who underwent robotic-assisted TKA. The National Institutes of Health Quality Assessment Tool was used to evaluate the quality of all the included studies.
Results
A total of 26 studies were assessed for eligibility, and 17 met the inclusion criteria. Nine studies reported on the accuracy and precision of component positioning. The ROSA platform for TKA had a cutting error of less than 0.6° for all coronal and sagittal parameters. Pooled analysis demonstrated accuracy within 0.61-1.87° and precision within 0.97-1.34° when the final intraoperative plan was compared to postoperative radiographs with fewer outliers. Four studies reported improved functional scores with ROSA-assisted TKA than conventional TKA within 1 year of surgery. There was no difference in overall complication rates when compared to conventional TKA.
Conclusions
The ROSA system is both highly accurate and precise, with fewer outliers when analyzed at various time points, including postoperative standing radiographs. Future studies with robust methodology and longer follow-up are required to demonstrate whether these findings have any clinical benefits in the long term.
期刊介绍:
Arthroplasty Today is a companion journal to the Journal of Arthroplasty. The journal Arthroplasty Today brings together the clinical and scientific foundations for joint replacement of the hip and knee in an open-access, online format. Arthroplasty Today solicits manuscripts of the highest quality from all areas of scientific endeavor that relate to joint replacement or the treatment of its complications, including those dealing with patient outcomes, economic and policy issues, prosthetic design, biomechanics, biomaterials, and biologic response to arthroplasty. The journal focuses on case reports. It is the purpose of Arthroplasty Today to present material to practicing orthopaedic surgeons that will keep them abreast of developments in the field, prove useful in the care of patients, and aid in understanding the scientific foundation of this subspecialty area of joint replacement. The international members of the Editorial Board provide a worldwide perspective for the journal''s area of interest. Their participation ensures that each issue of Arthroplasty Today provides the reader with timely, peer-reviewed articles of the highest quality.